2-ethyl-6-methyl-3-hydroxypyridine carnitinate is a broad-spectrum adaptogen, that stimulates autophagy in liver tissue

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Background: Under stress conditions, mitochondria become sources of excessive generation of reactive oxygen species (ROS), which can serve either as signaling molecules or damage cell structures. Antioxidants, reducing ROS generation, can serve as adaptogens to stress effects. It has been shown that a number of antioxidants are able to induce autophagy, which is able to activate the antioxidant-response element system. In this regard, the aim of the study was to investigate the anti-stress properties of a new antioxidant 2-ethyl-6-methyl-3-hydroxypyridine carnitinate (CP) and its ability to activate the synthesis of autophagy proteins Beclin-1, LC3.

Methods: Since the body’s resistance to stress factors primarily depends on energy metabolism, the effects of acute hypobaric hypoxia and CP on the LPO intensity in the lipid fraction of mice liver mitochondrial membranes were studied using the spectrofluorescence method. Autophagy proteins were determined by Western blotting using primary mice antibodies to Beclin-1 and LС3B proteins, as well as secondary antibodies labeled with horseradish peroxidase.

Results: Injection of 10–6 mol/kg CP to mice for 5 days prevented the growth of LPO intensity under conditions of acute hypobaric hypoxia (AHH). This drug increased life expectancy and increased survival of mice under conditions of various types of the hypoxia. The initiation of autophagy biomarker proteins (LC3B) by the drug was shown. At the same time, the content of Beclin-1 proteins tended to increase, which characterizes the onset of the autophagy process.

Conclusion: The new antioxidant CP can probably be used as an adaptogen to various types of hypoxia and an activator of autophagy.

Texto integral

Acesso é fechado

Sobre autores

Е. Mil

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: elenamil2004@mail.ru
Moscow

I. Zhigacheva

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: elenamil2004@mail.ru
Rússia, Moscow

M. Korovin

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: elenamil2004@mail.ru
Rússia, Moscow

V. Kuvyrkova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: elenamil2004@mail.ru
Rússia, Moscow

L. Matienko

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: elenamil2004@mail.ru
Rússia, Moscow

A. Albantova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: albantovaaa@mail.ru
Rússia, Moscow

А. Goloshchapov

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: elenamil2004@mail.ru
Rússia, Moscow

M. Rasulov

State Research Institute of Chemistry and Technology of Organoelement Compounds

Email: elenamil2004@mail.ru
Rússia, Mosсow

Bibliografia

  1. Дюмаев К. М., Воронина Т. А., Смирнов Л. Д. 1995. Антиоксиданты в профилактике и терапии патологий ЦНС. М.: Ин-т Биомед. химии РАМН. (Dyumaev K. M., Voronina T. A., Smirnov L. D. 1995. Antioxidants in the prevention and therapy of CNS pathologies. Moscow: Publishing House of the Institute of Biomed. Chem. Russ. Acad. Med. Sci.)
  2. Жигачева И. В., Русина И. Ф., Крикунова Н. И., Кузнецов Ю. В., Расулов М. М., Яковлева М. А., Голощапов А. Н. 2024. Предотвращение дисфункции митохондрий карнитинатом 2-этил-6-метил-3-гидроксипиридина. Биофизика. Т. 69.2. С. 252. (Zhigacheva I. V., Rusina I. F., Krikunova N. I., Kuznetsov Y. V., Rasulov M. M., Yakovleva M. A., Goloshchapov A. N. 2024. Prevention of mitochondrial dysfunction with 2-ethyl-6-methyl-3-hydroxypyridine carnitinate. Biofizika. V. 69. No. 2. P. 294.) https://doi.org/10.31857/S0006302924020105
  3. Зенков Н. К., Чечушков А. В., Кожин П. М., Мартинович Г. Г., Кандалинцева Н. В., Меньщикова Е. Б. 2019. Аутофагия как механизм защиты при окислительном стрессе. Бюллетень сибирской медицины. Т. 18. № 2. С. 195. (Zenkov N. K., Chechushkov A. V., Kozhin P. M., Martinovich G. G., Kandalintseva N. V., Menshchikova E. B. 2019. Autophagy as a defense mechanism under oxidative stress. Bull. Siberian Med. V. 18. No. 2. P. 195.) https://doi.org:10.20538/1682-0363-2019-2-195-214
  4. Калугина К. К., Сухарева К. С. Чуркина А. И., Костарева А. А. 2021. Аутофагия как звено патогенеза и мишень для терапии заболеваний скелетно-мышечной системы. Росс. Физиол. журнал им. И. М. Сеченова. Т. 107. № 6—7. С. 810. (Kalugina K. K., Sukhareva K. S., Churkina A. I., Kostareva A. A. 2021. Autophagy as a link in the pathogenesis and a target for the therapy of diseases of the musculoskeletal system. Sechenov Russ. Physiol. J. V. 107. No. 6-7. P. 810.) https://doi.org:10.31857/S0869813921060042
  5. Капица И. Г., Иванова Е. А., Воронина Т. А. 2019. Влияние мексидола на физическую и умственную работоспособность при стрессогенных воздействиях в эксперименте. Фармакокинетика и фармакодинамика, № 1. С. 12—17. (Kapitsa I. G., Ivanova E. A., Voronina T. A. 2019. The effect of mexidol on physical and mental performance under stressful influences in the experiment. Pharmacokinetics Pharmacodynamics (Russ.). No. 1. P. 12.) https://doi.org/10.24411/2587-7836-2019-10034
  6. Каркищенко Н. Н., Грачева С. В. 2010. Справочник по лабораторным животным и альтернативам модели в биомедицинских исследованиях. М.: Профиль. (Karkishchenko N. N., Gracheva S. V. 2010. Handbook of laboratory animals and model alternatives in biomedical research. Moscow: Profile.)
  7. Каркищенко В. Н., Каркищенко Н. Н., Шустов Е. Б., Берзин И. А., Фокин Ю. В., Алимкина О. В. 2016. Особенности интерпретации показателей работоспособности лабораторных животных по плавательным тестам с нагрузкой. Биомедицина. № 4. С. 34. (Karkishchenko V. N., Karkishchenko N. N., Shustov E. B., Berzin I. A., Fokin Yu.V., Alimkina O. V. 2016. Features of interpretation of performance indicators of laboratory animals according to swimming tests with load. Biomed. No. 4. P. 34.)
  8. Ковалева О. В., Шитова М. С., Зборовская И. Б. 2014. Аутофагия: клеточная гибель или способ выживания? Клиническая онкогематология. T. 7. № 2. С. 103. (Kovaleva O. V., Shitova M. S., Zborovskaya I. B. 2014. Autophagy: cell death or a way of survival? Clinical oncohematol. V. 7. No. 2. P. 103.)
  9. Кукес В. Г., Парфенова О. К., Романов Б. К., Прокофьев, Е. В. Парфенова А. Б., Сидоров Н. Г., Газданова А. А., Павлова Л. И., Зозина В.И, Андреев А. Д., Чернова С. В., Раменская Г. В. 2020. Механизм действия этоксидола на показатели окислительного стресса при сердечной недостаточности и гипертонии. СТМ. Клинические приложения. Т. 12. № 2. С. 67. (Kukes V. G., Parfenova О. K., Romanov B. K., Prokofiev А. B., Parfenova E. V., Sidorov N. G., Gazdanova, А.А., Pavlova L. I., Zozina V. I., Andreev А. D., Aleksandrova T. V., Chernova S. V., Ramenskaya G. V. 2020. The mechanism of action of ethoxidol on oxidative stress in dicesin heart failure and hypotension. Modern Technol. Medicine. V. 12. No. 2. P. 67.) https://doi.org/10.17691/stm2020.12.2.08
  10. Меньщикова Е. Б., Чечушков А. В., Кожин П. И., Хольшин С. В., Кандалинцева Н. В., Мартинович Г. Г., Зенков Н. К. 2018. Синтетические монофенольные антиоксиданты активируют аутофагию в опухолевых клетках: зависимость от структуры и концентрации. Вестник ВолГУ. Серия 11. Естественные науки. 2018. Т. 8. № 1. С. 53. (Menshchikova E. B., Chechushkov A. V., Kozhin P. M., Kholshin S. V., Kandalintseva N. V., Martinovich G. G., Zenkov N. K. 2018. Activation of autophagy in tumor cells by synthetic monophenol antioxidants: dependence on structure and concentration. Science VolSU. Natural Sci. V. 8. No 1. P. 54.) https://doi.org/10.15688/jvolsu11.2018.1.10
  11. Пожилова Е. В., Новиков В. Е., Новикова А. В. 2013. Роль фактора адаптации к гипоксии в развитии опухолей. Вестник Смоленской гос. мед. акад. Т. 12. № 3. С. 56. (Pozhilova E. V., Novikov V. E., Novikova A. V. 2013. The role of the factor of adaptation to hypoxia in the development of tumors. Bull. Smolensk State Med. Acad. V. 12. No. 3. P. 56.)
  12. Русина И. Ф., Касаикина О. Т., Кузнецов Ю. В., Трофимов А. В., Вепринцев Т. Л., Егорова Ю. Н. 2024. Соль-2-этил-6-метил-3-гидроксипиридина с гидратом карнитина, обладающая антиоксидантной активностью, и способ ее получения. Патент RU2817094 C1. 09.04.2024. (Rusina I. F., Kasaikina O. T., Kuznetsov Yu.V., Trofimov A. V., Veprintsev T. L., Egorova Yu.N. 2024. Salt of 2-ethyl-6-methyl-3-hydroxypyridine with carnitine hydrate, possessing antioxidant activity, and a method for its preparation. Patent RU2817094 C1. 09.04.2024.)
  13. Фрейдлин И. С., Маммедова Дж.Т., Старикова Э. А. 2019. Роль аутофагии при инфекциях. Росс. физиол. журнал им. И. М. Сеченова. 2019. Т. 105. № 12. С. 1486. (Freidlin I. S., Mammedova J. T., Starikova E. A. 2019. The role of autophagy in infections. Russ. Physiol. Sechenov J. V. 105. No. 12. P. 1486.) https://doi.org/10.1134/S0869813919120057
  14. Aruoma O. I.; Halliwell B.; Hoey B. M.; Butler J. 1989. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Rad. Biol. Med. V. 6. P. 593—597. doi: 10.1016/0891-5849(89)90066-x
  15. Fernández Á. F., Wei S. Y., Zou Zh., Shi M., McMillan K.L., He C., Tin T., Liu Y., Chiang W-Ch., Marciano D. K., Schiattarella G., Bhagat G., Moe O. W., Hu M. Ch., Levine B. 2018. Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice. Nature. V. 558. P. 136. https://doi.org/10.1038/s41586-018-0162-7
  16. Fletcher B. I., Dillard C. D., Tappel A. L. 1973. Measurement of fluorescent lipid peroxidation products in biological systems and tissues. Anal. Biochem. V. 52. P. 1. https://doi.org/10.1016/0003-2697(73)90327-8
  17. Hwang H. J., Ha H., Lee B. S., Kim B. H., Song H. K., Kim Y. K. 2022. LC3B is an RNA-binding protein to trigger rapid mRNA degradation during autophagy. Nature Commun. V. 13. Art. ID: 1436. https://doi.org/10.1038/s41467-022-29139-1
  18. Kang R., Zeh H. J., Lotze M. T., Tang D. 2011. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. V. 18. P. 571. https://doi.org/10.1038/cdd.2010.191
  19. Koukourakis M. I., Kalamida D., Giatromanolaki A., Zois Ch.E., Sivridis E., Pouliliou S., Mitrakas A., Gatter K. C., Harris A. L. 2015. Autophagosome proteins LC3A, LC3B and LC3C have distinct subcellular distribution kinetics and expression in cancer cell lines. PLoS One. V. 10. Art. ID: e0137675. https://doi.org/10.1371/journal.pone.0137675
  20. Levine B., Klionsky D. J. 2004. Development by self-digestion: molecular mechanisms and biological functions of autophagy Dev. Cell. V. 6. P. 463. https://doi.org/10.1016/s1534-5807(04)00099-1
  21. Liu S., Yao S., Yang H., Liu S., Wang Y. 2023. Autophagy: regulator of cell death. Cell Death Disease. V. 14. No. 10. Art. ID: 648. https://doi.org/10.1038/s41419-023-06154-8
  22. Mokhova E. N., Skulachev V. P., Zhigacheva I. V. 1977. Activation of the external pathway of NADH oxidation in liver mitochondria of cold-adapted rats. Biochim. Biophys. Acta. V. 501. P. 415. https://doi.org/10.1016/0005-2728(78)90109-3
  23. Okada H., Mak T. W. 2004. Pathways of apoptotic and non-apoptotic death in tumour cells. Nat. Rev. Cancer. V. 4. P. 592. https://doi.org/10.1038/nrc1412
  24. Zhigacheva I. V., Krikunova N. I., Binyukov V. I., Mil E., Rusina I., Goloshchapov A. 2023a. Ethoxidol as a broad-spectrum adaptogen. Curr. Mol. Pharmacol. V. 16. P. 109. https://doi.org/10.2174/1874467215666220308115514
  25. Zhigacheva I. V., Kricunova N. I., Rasulov M. M. 2023b. Adaptogenic properties of 1-(germatran-1-il)-oxyethylamine. Current Chem. Biol. V. 17. P. 49. https://doi.org/10.2174/2212796817666221205164816
  26. Zhigacheva I. V., Rusina I. F., Krikunova N. I., Goloschapov A. N., Veprintsev T. L., Yablonskaya O. I., Trofimov A. V. 2023c. Resveratrol and 2-ethyl-6-methyl-3-hydroxypiridine N-acetyl cysteinate as protecting agents upon the stress exposure. Int. J. Mol. Sci. V. 24. https://doi.org/10.3390/ijms241713172

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Structural formula of the antioxidant 2-ethyl-6-methyl-3-hydroxypyridine carnitinate (CP).

Baixar (64KB)
3. Fig. 2. Effect of the putative autophagy initiator (CP preparation, 10–5 mol/kg and starvation) on the LC3B (a1–a4) and Beclin1 (b1, b2) protein content in mouse liver cells. The results of Western blot analysis (a1–a3, b1) and the corresponding densitograms (a4, b2) are shown. Electrophoresis was performed in 10% PAGE using the appropriate antibodies to detect protein bands; DAB staining. Designations: control — intact well-fed mice, starvation — mice after 2-day starvation, CP — mice after daily administration of CP for 3 days; MB — marker proteins. Repeated experiments on the introduction of CP to mice (control and starvation) were carried out at intervals of 1 month. The histograms show the average density values ​​of the LC3B and Biclin-1 protein bands. a1 — LC3B bands in all three variants; a2 — LC3B protein patterns appear upon introduction of CP; LC3A corresponds to a molecular weight of 16 kDa, and LC3B — 14 kDa. a3 — The density of LC3B bands upon introduction of CP is close to the density of bands upon 2-day starvation.

Baixar (298KB)
4. Fig. 3. Effect of acute hypobaric hypoxia (AHB) against the background of CP (10–6 mol/kg for 5 days) on the fluorescence spectra of lipid peroxidation products in the membranes of mouse liver mitochondria. FI is the fluorescence intensity, conventional units per 1 mg of protein. Curves: 1 — AHB; 2 — CP + AHB (mice were subjected to 5-minute AHB 45 min after the end of CP); 3 — control.

Baixar (163KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025