N-Acyl Derivatives of 2-Amino-4,6-di-tERt-butylphenol — Potential Protectors Under Neutrophil-Induced Halogenating Stress

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The effect of N-acyl derivatives of 2-amino-4,6-di-tert-butylphenolon the functions of neutrophils was studied. It has been established that these derivatives with a free hydroxyl group in the benzene ring, in contrast to O-methylated ones, modify the properties of cells, which is expressed in a decrease in hypochlorous acid generation during the “respiratory burst” formation. These compounds are scavengers of HOCl/OCl generated by activated neutrophils and reduce the secretion of myeloperoxidase (MPO) from cells. N-(3,5-di-tert-butyl-2-hydroxyphenyl)acetamide has been shown to be the most effective hypochlorous acid scavenger. This substance significantly suppresses the secretory degranulation of neutrophils and has a cytoprotective effect under conditions of halogenating stress.

作者简介

G. Semenkova

Belarusian State Medical University

编辑信件的主要联系方式.
Email: n.amaegberi@gmail.com

Research Laboratory

白俄罗斯, Minsk, 220083

I. Zholnerevich

Belarusian State University

Email: n.amaegberi@gmail.com
白俄罗斯, Minsk, 220030

E. Kovalenko

Belarusian State University

Email: n.amaegberi@gmail.com
白俄罗斯, Minsk, 220030

G. Ksendzova

Belarusian State University

Email: n.amaegberi@gmail.com

Research Institute for Physical Chemical Problems

白俄罗斯, Minsk, 220030

V. Sorokin

Belarusian State University

Email: n.amaegberi@gmail.com
白俄罗斯, Minsk, 220030

N. Amaegberi

Belarusian State University

Email: n.amaegberi@gmail.com
白俄罗斯, Minsk, 220030

A. Klimovich

Belarusian State University

Email: n.amaegberi@gmail.com
白俄罗斯, Minsk, 220030

参考

  1. Бизунок Н. А., Дубовик Б. В., Ксендзова Г. А., Сорокин В. Л., Шадыро О. И. 2011. Антиоксидантный потенциал аминосодержащих производных фенола на модели генерации активных форм кислорода фагоцитами. Известия НАН Беларуси, серия мед. наук. Т. 2011. № 4. С. 61. (Bizunok N. A., Dubovik B. V., Ksendzova G. A., Sorokin V. L., Shadyro O. I. 2011. Antioxidant potential of amino-containing phenol derivatives on the model on of reactive oxygen species generation by phagocytes. № 4. P. 61.)
  2. Рощупкин Д. И., Белакина Н. С., Мурина М. А. 2006. Усиленная люминолом хемилюминесценция полиморфноядерных лейкоцитов кролика: природа оксидантов, непосредственно вызывающих окисление люминола. Биофизика. Т. 51. № 1. С. 99. (Roshchupkin D. I., Belakina N. S., Murina M. A. 2006. Luminol-enhanced chemiluminescence of rabbit polymorphonuclear leukocytes: the nature of oxidants directly responsible for luminol oxidation, Biofizika. V. 51. № 1. P. 99.)
  3. Шадыро О. И., Сорокин В. Л., Ксендзова Г. А., Савинова О. В., Самович С. Н., Бореко Е. И. 2019. Сравнительная оценка противогерпетической активности веществ с различным механизмом действия. Химико-фарм. ж. Т. 53. № 7. С. 45. (Shadyro O. I., Sorokin V. L., Ksendzova G. A., Savinova O. V., Samovich S. N., Boreko E. I. 2019. Comparative evaluation of the antiherpes activity of compounds with different mechanisms of action. Pharm. Chem. J. V. 53. P. 646.
  4. Arnhold J. 2020. The dual role of myeloperoxidase in immune response. Int. J. Mol. Sci. V. 21: 8057.
  5. Babior B. M. 2000. Phagocytes and oxidative stress. Am. J. Med. V. 109. P. 33.
  6. Bedouhène S, Dang P. M., Hurtado-Nedelec M., El-Benna J. 2020. Neutrophil degranulation of azurophil and specific granules. Methods Mol. Biol. V. 2087. P. 215.
  7. Böyum A.1976. Isolation of lymphocytes, granulocytes and macrophages. Scand. J. Immunol. V. 5. P. 9.
  8. Da Cruz Nizer W. S., Inkovskiy V., Overhage J. 2020. Surviving reactive chlorine stress: responses of gram-negative bacteria to hypochlorous acid. Microorganisms. V. 8: 1220.
  9. Davies M. J., Hawkins C. L. 2020. The role of myeloperoxidase in biomolecule modification, chronic inflammation, and disease. Antioxid. Redox. Signal. V. 32. P. 957.
  10. Dupré-Crochet S., Erard M., Nüβe O. 2013. ROS production in phagocytes: why, when, and where? J. Leukoc. Biol. V. 94. P. 657.
  11. Gamaley I. A., Kirpichnikova K. M., Klyubin I. V. 1994. Activation of murine macrophages by hydrogen peroxide. Cell Signal. V. 6. P. 949.
  12. Hawkins C. L. 2020. Hypochlorous acid-mediated modification of proteins and its consequences. Essays Biochem. V. 64. P. 75.
  13. Hawkins C. L., Pattison D. I., Davies M. J. 2003. Hypochlorite-induced oxidation of amino acids, peptides and proteins. Amino Acids. V. 25. P. 259.
  14. Kato F., Tanaka M., Nakamura K. 1999. Rapid fluorometric assay for cell viability and cell growth using nucleic acid staining and cell lysis agents.Toxicol. in Vitro. V. 13. P. 923.
  15. Kavalenka A. I., Semenkova G. N., Cherenkevich S. N. 2007. Effects of hydrogen peroxide on neutrophil ability to generate reactive oxygen and chlorine species and to secrete myeloperoxidase in vitro. Cell Tiss. Biol. V. 1. P. 551.
  16. Kuznetsova T., Kulahava T., Zholnerevich I., Amaegberi N., Semenkova G., Shadyro O., Arnhold J. 2017. Morphometric characteristics of neutrophils stimulated by adhesion and hypochlorite. Mol. Immunol. V. 87. P. 317.
  17. Lacy P. 2006. Mechanisms of degranulation in neutrophils. Allergy Asthma Clin. Immunol. V. 2. P. 98.
  18. Li Y., Zhu H., Kuppusamy P., Roubaud V., Zweier J. L., Trush M. A. 1998. Validation of lucigenin (bis-N-methylacridinium) as a chemilumigenic probe for detecting superoxide anion radical production by enzymatic and cellular systems. J. Biol. Chem. V. 273. P. 2015.
  19. Liu L., Dahlgren C., Elwing H., Lundqvist H.1996. A simple chemiluminescence assay for the determination of reactive oxygen species produced by human neutrophils. J. Immunol. Meth. V. 192. P. 173.
  20. Malle E., Waeg G., Schreiber R., Gröne E. F., Sattler W., Gröne H. J. 2000. Immunological evidence for the myeloperoxidase/H2O2/halide system in human atherosclerotic lesions. Eur. J. Biochem. V. 267. P. 4495.
  21. Mayadas T. N., Cullere X., Lowell C. A. 2014. The multifaceted functions of neutrophils. Annu. Rev. Pathol. Mech. Dis. V. 9. P. 181.
  22. Morris G., Gevezova M., Sarafian V. Maes M.2022. Redox regulation of the immune response. Cell Mol. Immunol. V. 19. P. 1079.
  23. Nussbaum C., Klinke A., Adam M., Baldus S., Sperandio M. 2013. Myeloperoxidase: a leukocyte-derivedprotagonist of inflammation and cardiovascular disease. Antioxid. Redox Signal. V. 18. P. 692.
  24. Ramachandra C. J.A., Ja K. P.M.M., Chua J., Cong S., Shim W., Hausenloy D. J. 2020. Myeloperoxidase as a multifaceted target for cardiovascular protection. Antioxid Redox Signal. V. 32(15). P. 1135.
  25. Rizo-Téllez S.A., Sekheri M., Filep J. G. 2022. Myeloperoxidase: Regulation of neutrophil function and target for therapy. Antioxidants. V. 11(11). P. 2302.
  26. Shadyro O., Lisovskaya A., Semenkova G., Edimecheva I., Amaegberi N. 2015. Free-radical destruction of sphingolipids resulting in 2-hexadecenal formation. Lipid Insights. V. 8. P. 1.
  27. Shadyro O. I., Ksendzova G. A., Polozov G. I., Sorokin V. L., Boreko E. I., Savinova O. V., Dubovik B. V., Bizunok N. A. 2008. Synthesis and study of anti-radical and antiviral properties of aminophenol derivatives. Bioorg. Med. Chem. Lett. V. 18. Р. 2420.
  28. Shugar D.1952. The measurement of lysozyme activity and the ultra-violet inactivation of lysozyme. Biochim. Biophys. Acta. V. 8. P. 302.
  29. Tzikas S., Schlak D., Sopova K., Gatsiou A., Stakos D., Stamatelopoulos K., Stellos K., Laske C. 2014. Increased myeloperoxidase plasma levels in patients with Alzheimer’s disease. J. Alzheimers Dis. V. 39. P. 557.
  30. Ulfig A., Leichert L. I. 2021. The effects of neutrophil-generated hypochlorous acid and other hypohalous acids on host and pathogens. Cell. Mol. LifeSci. V. 78. P. 385.
  31. Zeng M. Y., Miralda I., Armstrong C. L., Uriarte S. M., Bagaitkar J. 2019. The roles of NADPH oxidase in modulating neutrophil effector responses. Mol. Oral. Microbiol. V. 34(2). P. 27.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024