A theory of the evolutionary role of hereditary tumors (carcino-evo-devo): the history and the current state. Part 3. The current state of carcino-evo-devo theory and its relationships with other biological theories

Cover Page

Cite item

Full Text

Abstract

After publishing the monograph “Evolution by Tumor Neofunctionalization”, the author continued developing a theory of the evolutionary role of tumors in subsequent publications, in which a theory assumed its current state. In this part of the article, the author reviews the current state of a theory of the evolutionary role of tumors (carcino-evo-devo) and its relationship with other biological theories.

Full Text

Restricted Access

About the authors

A. P. Kozlov

Vavilov Institute of General Genetics, Russian Academy of Sciences; Biomedical Center; Peter the Great St. Petersburg Polytechnic University

Author for correspondence.
Email: contact@biomed.spb.ru
Russian Federation, Moscow; St. Petersburg; St. Petersburg

References

  1. Абелев Г.И., Перова С.Д., Храмкова Н.И. и др. Эмбриональный сывороточный α-глобулин и его синтез перевиваемыми гепатомами мышей // Биохимия. 1963. Т. 28. С. 625–634.
  2. Акулова Е.Б., Карнаухова Ю.К., Круковская Л.Л. и др. TSEEN-гены человека экспрессируются в висцеральной жировой ткани при ожирении // Тез. XVII Всерос. науч.-практ. конф. им. А.Ю. Барышникова с междунар. участ. “Новые перспективные противоопухолевые препараты и медицинские технологии: проблемы, достижения, перспективы” (Москва, 20–21 апреля 2023 г.). М.: АБВ-пресс, 2023а. С. 3–4.
  3. Акулова Е.Б., Карнаухова Ю.К., Круковская Л.Л. и др. Экспрессия TSEEN-генов человека в опухолях и висцеральной жировой ткани при ожирении — свидетельство в пользу опухолеподобной природы ожирения // Успехи мол. онкол. Тез. VIII Всерос. Конф. по молекулярной онкологии. 2023б. Т. 10 (4). Приложение. С. 10.
  4. Альбертс Б., Брей В., Льюис Дж. и др. Молекулярная биология клетки. Т. 3. М.: Мир, 1994. 504 с.
  5. Воронцов Н.Н. Макромутации и эволюция: фиксация гольдшмидтовских макромутаций как видовых и родовых признаков. Папилломатоз и возникновение макроворсинок в желудке грызунов // Генетика. 2003. Т. 39. С. 519–524.
  6. Евтушенко В.И., Хансон К.П., Барабицкая О.В. и др. Определение верхнего предела величины экспрессии генома // Мол. биол. 1989. Т. 23. С. 663–675.
  7. Карнаухова Ю.К., Полев Д.Е., Круковская Л.Л., Козлов А.П. Изучение экспрессии гена Orthopedia homeobox в различных опухолевых и нормальных тканях человека // Вопр. онкол. 2017. Т. 63 (1). С. 128–134.
  8. Кедров Б.М. Предмет и взаимосвязь естественных наук. М.: Наука, 1962. 412 с.
  9. Козлов А.П. Регуляторные механизмы как выражение и результат эволюции конкурентных отношений между генами. Соленостные адаптации водных организмов. Л.: Наука, 1976. С. 237–245.
  10. Козлов А.П. Принципы многоуровневого развития организмов. Проблемы анализа биологических систем. М.: МГУ, 1983. С. 48–62.
  11. Козлов А.П. Генная конкуренция и возможная эволюционная роль опухолей и клеточных онкогенов. Теоретические и математические аспекты морфогенеза. М.: Наука, 1987. С. 136–140.
  12. Козлов А.П. Принципы сохранения в системе молекулярно-биологических законов // Теоретическая биология: структурно-функциональный подход / Ред. С.Г. Инге-Вечтомов. Л.: ЛГУ, 1988. С. 4–21.
  13. Козлов А.П. Опухоли и эволюция // Вопр. онкол. 2008. Т. 54 (6). С. 695–705.
  14. Козлов А.П. Роль опухолей в эволюции многоклеточных организмов // Биосфера. 2011. Т. 3. С. 369–378.
  15. Козлов А.П. Эволюция путем неофункционализации опухолей: новообразования как фактор прогрессивной эволюции. СПб.: Изд-во Политех. унив., 2016. 263 с.
  16. Козлов А.П. Новая биологическая теория — теория carcino-evo-devo, ее нетривиальные предсказания и взаимоотношения с другими биологическими теориями // Мед. генет. 2022. Т. 21 (8). С. 4–8.
  17. Козлов А.П. Теория эволюционной роли опухолей, carcino-evo-devo. М.: Акварель, 2023. 72 с.
  18. Козлов А.П., Забежинский М.А., Попович И.Г. и др. Гиперпластические разрастания на коже головы золотых рыбок — сравнительно-онкологические аспекты // Вопр. онкол. 2012. Т. 58 (3). С. 387–393.
  19. Козлов А.П., Круковская Л.Л., Самусик Н.А. и др. Эволюционно новые гены, специфически экспрессирующиеся в опухолях: новый класс мишеней? // Рос. биотер. журн. 2017. Т. 16 (S1). С. 42–43.
  20. Козлов А.П., Матюнина Е.А., Макашов А.А. База данных генов TSEEN Биомедицинского центра. Свидетельство о государственной регистрации базы данных № RU2021621840. Дата рег.: 24.08.2021. Дата публ.: 01.09.2021.
  21. Круковская Л.Л., Полев Д.Е., Носова Ю.К. и др. Изучение экспрессии транскрипционного фактора BRACHYURY (T) в нормальных и опухолевых тканях человека // Вопр. онкол. 2008. Т. 54 (6). С. 739–743.
  22. Круковская Л.Л., Самусик Н.Д., Шилов Е.С. и др. Опухолеспецифическая экспрессия эволюционно нового гена PBOV1 // Вопр. онкол. 2010. Т. 56 (3). С. 327–332.
  23. Круковская Л.Л., Полев Д.Е., Курбатова Т.В. и др. Изучение опухолеспецифичности экспрессии некоторых эволюционно новых генов // Вопр. онкол. 2016. Т. 62 (3). С. 495–500.
  24. Полев Д., Носова Ю., Круковская Л. и др. Экспрессия транскриптов, соответствующих кластеру HS.633957 в тканях и опухолях человека // Мол. биол. 2009. Т. 43 (1). С. 97–102.
  25. Полев Д.Е., Круковская Л.Л., Козлов А.П. Экспрессия локуса HS.633957 в органах пищеварительной системы и опухолях человека // Вопр. онкол. 2011. Т. 57 (1). С. 48–49.
  26. Самусик Н.А., Галачьянц Ю.П., Козлов А.П. Сравнительно-геномный анализ опухолеспецифических транскрибируемых последовательностей человека // Рус. журн. “СПИД, рак и общественное здоровье”. 2007. Т. 10. С. 30–32.
  27. Самусик Н.А., Галачьянц Ю.П., Козлов А.П. Анализ эволюционной новизны последовательностей, экспрессирующихся в опухолях // Экол. генетика. 2009. Т. 7. С. 26–37.
  28. Северцов А.Н. Главные направления эволюционного процесса. М.: Тов-во А.В. Думнов и К°, 1925. 84 с.
  29. Северцов А.Н. Морфологические закономерности эволюции. М., Л.: АН СССР, 1939. 610 с.
  30. Степин В.С. Философия науки. Общие проблемы. М.: Гардарики, 2006. 384 с.
  31. Татаринов Ю.С. Обнаружение эмбриоспецифического α-глобулина в сыворотке крови больного первичным раком печени // Вопр. мед. химии. 1964а. Т. 10. С. 90–91.
  32. Татаринов Ю.С. Обнаружение эмбриоспецифического α-глобулина в сыворотке крови при гепатоцеллюлярном раке и активной фазе цирроза печени // Вопр. мед. химии. 1964б. Т. 10. С. 218.
  33. Татаринов Ю.С. Новые данные об эмбриоспецифических антигенных компонентах сыворотки крови человека // Вопр. мед. химии. 1964в. Т. 10. С. 584–589.
  34. Шимкевич В.М. Уродства и происхождение видов. СПб., М.: Тов-во М.О. Вольф, 1909. 106 с.
  35. Эйнштейн А. Физика и реальность. М.: Наука, 1965. 359 с.
  36. Abelev G.I., Perova S., Kramkova N.I. et al. Embryonal serum alpha-globulin and its synthesis by transplantable mouse hepatomas // Transplant. Bull. 1963. V. 1. P. 174–180.
  37. Adleman L.M. Molecular computation of solutions to combinatorial problems // Science. 1994. V. 226. P. 1021–1024.
  38. Aiello N.M., Stanger B.Z. Echoes of the embryo: using the developmental biology toolkit to study cancer // Dis. Model. Mech. 2016. V. 9. P. 105–114.
  39. Aktipis C.A., Boddy A.M., Jansen G. et al. Cancer across the tree of life: cooperation and cheating in multicellularity // Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015. V. 370. P. 20140219.
  40. Akulova E.B., Murashev B.V., Verevochkin S.V. et al. The increase of the magnitude of spontaneous viral blips in some participants of phase II clinical trial of therapeutic optimized HIV DNA vaccine candidate // Vaccines (Basel). 2019. V. 7 (3). P. 92.
  41. Albuquerque T.A.F., Do Val L.D., Doherty A., De Magalhães J.P. From humans to hydra: patterns of cancer across the tree of life // Biol. Rev. Camb. Philos. Soc. 2018. V. 93. P. 1715–1734.
  42. Alexander R.M. Dinosaur biomechanics // Proc. Biol. Sci. 2006. V. 273 (1596). P. 1849–1855.
  43. An G., Ng A.Y., Meka C.S. et al. Cloning and characterization UROC28, a novel gene overexpressed in prostate, breast and bladder cancer // Cancer Res. 2000. V. 60. P. 7014–7020.
  44. Anderson N.G. Evolutionary significance of viral infection // Nature. 1970. V. 227. P. 1346–1347.
  45. Arendt D. The evolution of cell types in animals: emerging principles from molecular studies // Nat. Rev. Genet. 2008. V. 9 (11). P. 868–882.
  46. Arendt D., Musser J.M., Baker C.V.H. et al. The origin and evolution of cell types // Nat. Rev. Genet. 2016. V. 17 (12). P. 744–757.
  47. Baranova A.V., Lobashev A.V., Ivanov D.V. et al. In silico screening for tumour-specific expressed sequences in human genome // FEBS Lett. 2001. V. 508. P. 143–148.
  48. Blond J.L., Besème F., Duret L. et al. Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family // J. Virol. 1999. V. 73. P. 1175–1185.
  49. Boddy A.M., Abegglen L.M., Pessier A.P. et al. Lifetime cancer prevalence and lifetime history traits in mammals // Evol. Med. Public Health. 2020. V. 2020 (1). P. 187–195.
  50. Boutry J., Tissot S., Ujvari B. et al. The evolution and ecology of benign tumors // Biochim. Biophys. Acta Rev. Cancer. 2022. V. 1877 (1). P. 188643.
  51. Cairns J. Mutation, selection and the natural history of cancer // Nature. 1975. V. 255. P. 197–200.
  52. Carleton N.M., Zhu G., Gorbunov M. et al. PBOV1 as a potential biomarker for more advanced prostate cancer based on protein and digital histomorphometric analysis // Prostate. 2018. V. 78 (7). P. 547–559.
  53. Carvunis A.R., Rolland T., Wapinski I. et al. Proto-genes and de novo gene birth // Nature. 2012. V. 487. P. 370–374.
  54. Cohnheim J. Vorlesungen uber allgemein Pathologie. Berlin: Hirschwald, 1877. 692 s.
  55. Cohnheim J. Lectures on general pathology. V. 2. London: The New Sydenham Society, 1889. 1434 p.
  56. Davidson E.H. The regulatory genome. Amsterdam, Boston, Heidelberg: Elsevier Inc., 2006. 304 p.
  57. Davies J.A. Inverse correlation between an organ′s cancer rate and its evolutionary antiquity // Organogenesis. 2004. V. 1 (2). P. 60–63.
  58. Dobrynin P., Matyunina E., Malov S., Kozlov A. The novelty of human cancer/testis antigen encoding genes in evolution // Int. J. Genom. 2013. V. 2013. P. 105108.
  59. Dobzhansky T. Nothing in biology makes sense except in the light of evolution // Am. Biol. Teacher. 1973. V. 35 (3). P. 125–129.
  60. Domazet-Lošo T., Brajkovic J., Tautz D. A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages // Trends Genet. 2007. V. 23. P. 533–539.
  61. Domazet-Lošo T., Tautz D. Phylostratigraphic tracking of cancer genes suggests a link to the emergence of multicellularity in metazoan // BMC Biol. 2010. V. 8. P. 66.
  62. Du Y., Hou Y., Shi Y. et al. Long non-coding RNA ELFN1-AS1 promoted colon cancer cell growth and migration via the miR-191-5p/special AT-rich sequence-binding protein axis // Front. Oncol. 2021. V. 10. P. 588360.
  63. Durante F. Nesso fisio-patologico tra la struttura dei nei materni e la genesi di alcuni tumori maligni // Arch. Memor. Observ. Chir. Prat. 1874. V. 11. P. 217.
  64. Egeblad M., Nakasone E.S., Werb Z. Tumors as organs: complex tissues that interface with the entire organism // Dev. Cell. 2010. V. 18. P. 884–901.
  65. Evtushenko V.I., Barabitskaya O.V., Emeljanov A.V., Kozlov A.P. Estimation of the maximal expression of the rat genome and the complexity of tumor-specific transcripts // Abs. First Int. Conf. on Gene Regulation, Oncogenesis, and AIDS (Loutráki, Greece, September 15–21, 1989). Loutráki: 1990.
  66. Ewald P.W. Evolution of infectious disease. Oxford, N.Y.: Oxford Univ. Press, 1994. 320 p.
  67. Fernandez A.A., Morris M.R. Mate choice for more melanin as a mechanism to maintain functional oncogene // PNAS USA. 2008. V. 105. P. 13503–13507.
  68. Flajnik M.F., Kasahara M. Origin and evolution of the adaptive immune system: genetic events and selective pressures // Nat. Rev. Genet. 2010. V. 11 (1). P. 47–59.
  69. Galachyants Y., Kozlov A.P. CDD as a tool for discovery of specifically-expressed transcripts // Russ. J. “AIDS, cancer and related problems”. 2009. V. 13 (2). P. 60–61.
  70. Galis F., Metz J.A.J., van Alphen J.J.M. Development and evolutionary constraints in animals // Annu. Rev. Ecol. Evol. Syst. 2018. V. 49. P. 499–522.
  71. Garcia-Ovejero D., Arevalo-Martin A., Paniagua-Torija B. et al. The ependymal region of the adult human spinal cord differs from other species and shows ependymoma-like features // Brain. 2015. V. 138. P. 1583–1597.
  72. Gatenby R.A. A change of strategy in the war on cancer // Nature. 2009. V. 459. P. 508–509.
  73. Gatenby R.A., Silva A.S., Gillies R.J., Frieden B.R. Adaptive therapy // Cancer Res. 2009. V. 69. P. 4894–4903.
  74. Gold P., Freedman S.O. Demonstration of tumor-specific antigens in human colonic carcinomata by immunological tolerance and absorption techniques // J. Exp. Med. 1965. V. 121 (3). P. 439–462.
  75. Goldschmidt R. The material basis of evolution. New Haven: Yale Univ. Press, 1940. 436 p.
  76. Gould S.J. Ontogeny and phylogeny. Cambridge: The Belknap Press of Harward Univ. Press, 1977a. 520 p.
  77. Gould S.J. The return of hopeful monsters // Nat. Hist. 1977b. V. 86. P. 22–30.
  78. Gould S.J. Is a new and general theory of evolution emerging? // Paleobiology. 1980. V. 6 (1). P. 119–130.
  79. Graham J. Cancer selection. The new theory of evolution. Lexington: Aculeus Press Inc., 1992. 226 p.
  80. Grozinger L., Amos M., Gorochowski T.E. et al. Pathways to cellular supremacy in biocomputing // Nat. Commun. 2019. V. 10 (1). P. 5250.
  81. Guo Y., Wu Z., Shen S. et al. Nanomedicines reveal how PBOV1 promotes hepatocellular carcinoma for effective gene therapy // Nat. Commun. 2018. V. 9 (1). P. 3430.
  82. HajiEsmailpoor Z., Fayazi A., Teimouri M., Tabnak P. Role of long non-coding RNA ELFN1-AS1 in carcinogenesis // Discov. Oncol. 2024. V. 15. P. 74.
  83. Hall B.K. Evo-Devo: evolutionary developmental mechanisms // Int. J. Dev. Biol. 2003. V. 47. P. 491–495.
  84. Hamilton D.H., David J.M., Dominguez C., Palena C. Development of cancer vaccines targeting Brachyury, a transcription factor associated with tumor epithelial-mesenchymal transition // Cells Tissues Organs. 2017. V. 203 (2). P. 128–138.
  85. Harris J.R. The evolution of placental mammals // FEBS Lett. 1991. V. 295. P. 3–4.
  86. Hendrix M.J.C., Lurie R.H. The convergence of embryonic and cancer signaling pathways: role in tumor cell plasticity // FASEB J. 2007. V. 21 (5). P. A32.
  87. Hendrix M.J.C., Seftor E.A., Seftor R.E.B. et al. Reprogramming metastatic tumor cells with embryonic microenvironment // Nat. Rev. Cancer. 2007. V. 7. P. 246–255.
  88. Hnisz D., Schuijers J., Lin C.Y. et al. Covergence of developmental and oncogenic signaling pathways at transcriptional super-enhancers // Mol. Cell. 2015. V. 58. P. 1–9.
  89. Honjo S., Doran H.E., Stiller C.A. et al. Neuroblastoma trends in Osaka, Japan, and Great Britain 1970–1994, in relation to screening // Int. J. Cancer. 2003. V. 103. P. 538–543.
  90. Huang J., Yuan W., Chen B. et al. lncRNA ELFN1-AS1 upregulates TRIM29 suppressing miR-211-3p to promote gastric cancer progression // Acta Biochim. Biophys. Sin. 2023. V. 55 (3). P. 484–497.
  91. Jie Y., Ye L., Chen H. et al. ELFN1-AS1 accelerates cell proliferation, invasion and migration via regulating miR-497-3p/CLDN4 axis in ovarian cancer // Bioengineered. 2020. V. 11 (1). P. 872–882.
  92. Karnaukhova I.K., Polev D.E., Krukovskaya L.L. et al. A new cancer/testis long noncoding RNA, the OTP-AS1 RNA // Sci. Rep. 2024. In press.
  93. Kong Q., Han J., Deng H. et al. miR-431-5p alters the epithelial-to-mesenchimal transition markers targeting UROC28 in hepatoma cells // Onco Targets Ther. 2018. V. 11. P. 6489–6503.
  94. Koonin E.V. Orthologs, paralogs, and evolutionary genomics // Annu. Rev. Genet. 2005. V. 39. P. 309–338.
  95. Kozlov A.P. Evolution of living organisms as a multilevel process // J. Theor. Biol. 1979. V. 81 (1). P. 1–17.
  96. Kozlov A.P. Gene competition and the possible evolutionary role of tumours // Med. Hypotheses. 1996. V. 46 (2). P. 81–84.
  97. Kozlov A.P. The possible evolutionary role of tumors in the origin of new cell types // Med. Hypotheses. 2010. V. 74. P. 177–185.
  98. Kozlov A.P. Evolution by tumor neofunctionalization: the role of tumors in the origin of new cell types, tissues and organs. Boston: Elsevier—Acad. Press, 2014. 248 p.
  99. Kozlov A.P. Expression of evolutionarily novel genes in tumors // Infect. Agent Cancer. 2016. V. 11. P. 34.
  100. Kozlov A.P. The role of heritable tumors in evolution of development: a new theory of carcino-evo-devo // Acta Naturae. 2019a. V. 11 (4). P. 65–72.
  101. Kozlov A.P. Evolution by tumor neofunctionalization: the role of tumors in the origin of new cell types, tissues and organs. Beijing, China: China Sci. Publ. & Media Ltd., 2019b. 200 p.
  102. Kozlov A.P. Mammalian tumor-like organs. 1. The role of tumor-like normal organs and atypical tumor organs in the evolution of development (carcino-evo-devo) // Infect. Agent Cancer. 2022a. V. 17. P. 2.
  103. Kozlov A.P. Mammalian tumor-like organs. 2. Mammalian adipose has many tumor features and obesity is a tumor-like process // Infect. Agent Cancer. 2022b. V. 17. P. 15.
  104. Kozlov A.P. Biological computation and compatibility search in the possibility space as the mechanism of complexity increase during progressive evolution // Evol. Bioinf. 2022c. V. 18. P. 1–5.
  105. Kozlov A.P. The theory of carcino-evo-devo and its non-trivial predictions // Genes. 2022d. V. 13 (1). P. 2347.
  106. Kozlov A.P. Mammalian adipose has many tumor features, which suggests the possible way of its evolutionary origin // Proc. Am. Ass. Cancer Res. Annu. Meet. (New Orleans, April 8–13, 2022) / Cancer Res. 2022e. V. 82 (12_Suppl.). № 6077.
  107. Kozlov A.P. Carcino-evo-devo, a theory of the evolutionary role of hereditary tumors // Int. J. Mol. Sci. 2023a. V. 24 (10). P. 8611.
  108. Kozlov A.P. Diagrams describing the evolution of gene expression, the emergence of novel cell types during evolution, and evo-devo // Gene Expression. 2023b. V. 22 (3). P. 262–269.
  109. Kozlov A.P. Structural complexity growth as a fundamental law of nature. Multilevel increase in complexity, frozen accidents, and transitory forms in macroevolution // Палеонтол. журн. 2024. в печати.
  110. Kozlov A.P., Emeljanov A.V., Barabitskaya O.V., Evtushenko V.I. The maximal expression of mammalian genome, the complexity of tumor-specific transcripts and the cloning of tumor-specific cDNAs // Abstr. Annu. Meet. Spons. Lab. Tumor Cell Biol. Bethesda, Maryland: National Cancer Institute (US), 1992.
  111. Kozlov A.P., Galachyants Y.P., Dukhovlinov I.V. et al. Evolutionarily new sequences expressed in tumors // Infect. Agent Cancer. 2006. V. 1. P. 8.
  112. Kramer B.S. The science of early detection // Urol. Oncol. 2004. V. 22. P. 344–347.
  113. Kramer B.S., Croswell J.M. Cancer screening: the clash of science and intuition // Annu. Rev. Med. 2009. V. 60. P. 125–137.
  114. Krukovskaja L.L., Baranova A., Tyezelova T. et al. Experimental study of human expressed sequences newly identified in silico as tumor specific // Tumour Biol. 2005. V. 26 (1). P. 17–24.
  115. Kurlak L.O., Knöfler M., Mistry H.D. Lumps & Bumps: common features between placental development and cancer growth // Placenta. 2017. V. 56. P. 2–4.
  116. Lala P.K., Nandi P., Hadi A., Halari C. A crossroad between placental and tumor biology: what have we learnt? // Placenta. 2021. V. 116. P. 12–30.
  117. Li Y., Gan Y., Liu J. et al. Downregulation of MEIS1 mediated by ELFN1-AS1/EZH2/DNMT3a axis promotes tumorigenesis and oxaliplatin resistance in colorectal cancer // Signal Transduct. Target. Ther. 2022. V. 7. P. 87.
  118. Liu J., Liu Y., Gao F. et al. Comprehensive study of a novel immune-related lncRNA for prognosis and drug treatment of cervical squamous cell carcinoma // Am. J. Transl. Res. 2021. V. 13 (10). P. 11771–11785.
  119. Ma Y., Zhang P., Wang F. et al. The relationship between early embryo development and tumorigenesis // J. Cell Mol. Med. 2010. V. 14. P. 2697–2701.
  120. Ma G., Li G., Gou A. et al. Long non-coding RNA ELFN1-AS1 in the pathogenesis of pancreatic cancer // Ann. Transl. Med. 2021. V. 9 (10). P. 877.
  121. Ma C., Li C., Ma H. et al. Pan-cancer surveys indicate cell cycle-related roles of primate-specific genes in tumors and embryonic cerebrum // Genome Biol. 2022. V. 23 (1). P. 251.
  122. Makashov A.A., Malov S.V., Kozlov A.P. Oncogenes, tumor suppressor and differentiation genes represent the oldest human gene classes and evolve concurrently // Sci. Rep. 2019. V. 9. P. 16410.
  123. Markert C.L. Neoplasia: a disease of cell differentiation // Cancer Res. 1968. V. 28. P. 1908–1914.
  124. Matyunina E.A., Emelyanov A.V., Kurbatova T.V. et al. Evolutionarily novel genes are expressed in transgenic fish tumors and their orthologs are involved in development of progressive traits in humans // Infect. Agent Cancer. 2019. V. 14 (46). P. 1–14.
  125. Maynard Smith J., Burian R., Kauffman S. et al. Developmental constraints and evolution // Quart. Rev. Biol. 1985. V. 60. P. 265–287.
  126. McLysaght A., Hurst L.D. Open questions in the study of de novo genes: what, how and why? // Nat. Rev. Genet. 2016. V. 17 (9). P. 567–578.
  127. Mead L.S. Transforming our thinking about transitional forms // Evol. Ed. Outreach. 2009. V. 2. P. 310–314.
  128. Mi S., Lee X., Li X. et al. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis // Nature. 2000. V. 403. P. 785–789.
  129. Micalizzi D.S., Farabaugh S.M., Ford H.L. Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression // J. Mammary Gland Biol. Neoplasia. 2010. V. 15. P. 117–134.
  130. Moczek A.P., Sultan S., Foster S. et al. The role of developmental plasticity in evolutionary innovation // Proc. Roy. Soc. B. 2011. V. 278. P. 2705–2713.
  131. Myers C.E., Hoelzinger D.B., Truong T.N. et al. Chemotherapy can induce weight normalization of morbidly obese mice despite undiminished ingestion of high fat diet // Oncotarget. 2017. V. 8 (3). P. 5426–5438.
  132. Nekliudova U.A., Schwaha T.F., Kotenko O.N. et al. Three in one: evolution of viviparity, coenocytic placenta and polyembryony in cyclostome bryozoans // BMC Ecol. Evol. 2021. V. 21. P. 54.
  133. Nowell P.C. The clonal evolution of tumor cell populations // Science. 1976. V. 194. P. 23–28.
  134. Nowell P.C. Mechanisms of tumor progression // Cancer Res. 1986. V. 46. P. 2203–2207.
  135. Ohno S. Evolution by gene duplication. N.Y.: Springer-Verlag, 1970. 150 p.
  136. Ostrovsky A.N., Lidgard S., Gordon D.P. et al. Matrotrophy and placentation in invertebrates: a new paradigm // Biol. Rev. Camb. Philos. Soc. 2016. V. 91. P. 673–711.
  137. Palena C., Polev D.E., Tsang K.Y. et al. The human T-box mesodermal transcription factor Brachyury is a candidate target for T-cell-mediated cancer immunotherapy // Clin. Cancer Res. 2007. V. 13 (8). P. 2471–2478.
  138. Paun G., Rozenberg G., Salomaa A. DNA computing: new computing paradigms. N.Y.: Springer-Verlag, 1998. 402 p.
  139. Pan T., Wu R., Liu B. et al. PBOV1 promotes prostate cancer proliferation by promoting G1/S transition // Onco Targets Ther. 2016. V. 9. P. 787–795.
  140. Polev D.E., Karnaukhova I.K., Krukovskaya L.L., Kozlov A.P. ELFN1-AS1: a novel primate gene with possible microRNA function expressed predominantly in human tumors // BioMed Res. Int. 2014. V. 2014. P. 398097.
  141. Rothschild B.M., Tanke D.H., Helbling II M., Martin L.D. Epidemiologic study of tumors in dinosaurs // Naturwissenschaften. 2003. V. 90. P. 495–500.
  142. Samusik N., Galachyants Y., Kozlov A.P. Analysis of evolutionary novelty of tumor-specifically expressed sequences // Russ. J. Genet. Appl. Res. 2011. V. 1 (2). P. 138–148.
  143. Samusik N., Krukovskaya L., Meln I. et al. PBOV1 is a human de novo gene with tumor-specific expression that is associated with a positive clinical outcome of cancer // PLoS One. 2013. V. 8 (2). P. e56162.
  144. Schlom J., Palena C.M., Kozlov A.P., Tsang K.-Y. Brachyury polypeptides and methods for use. Patent US8188214B2. USA, 2012.
  145. Sinkala M. Mutational landscape of cancer-driver genes across human cancers // Sci. Rep. 2023. V. 13. Art. 12742.
  146. Sokolenko A.P., Imyanitov E.N. Molecular diagnostics in clinical oncology // Front. Mol. Biosci. 2018. V. 5. P. 76.
  147. Tollis M., Schneider-Utaka A.K., Maley C.C. The evolution of human cancer gene duplications across mammals // Mol. Biol. Evol. 2020. V. 37 (10). P. 2875–2886.
  148. Topczewska J.M., Postovit L.-M., Margaryan N.V. et al. Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness // Nat. Med. 2006. V. 12 (8). P. 925–932.
  149. Uller T., Feiner N., Radesma R. et al. Developmental plasticity and evolutionary explanations // Evol. Dev. 2020. V. 22 (1–2). P. 47–55.
  150. Valentine J.W. The evolution of multicellular plants and animals // Sci. Amer. 1978. V. 239. P. 140–146, 148–149, 150–153, 156–158.
  151. van Oss S.B., Carvunis A.-R. De novo gene birth // PLoS Genet. 2019. V. 15 (5). P. e1008160.
  152. Vickaryous M.K., Hall B.K. Human cell type diversity, evolution, development, and classification with special reference to cells derived from neural crest // Biol. Rev. Camb. Philos. Soc. 2006. V. 81. P. 425–455.
  153. Wang L., Niu C.H., Wu S. et al. PBOV1 correlates with progression of ovarian cancer and inhibits proliferation of ovarian cancer cells // Oncol. Rep. 2016. V. 35. P. 488–496.
  154. Warner J.F., Lyons D.C., McClay D.R. Left-right asymmetry in the sea urchin embryo: BMP and the asymmetrical origins of the adult // PLoS Biol. 2012. V. 10. P. e1001404.
  155. Weisman C.M. The origins and functions of de novo genes: against all odds? // J. Mol. Evol. 2022. V. 90. P. 244–257.
  156. Williams G.C., Nesse R.M. The dawn of Darwinian medicine // Q. Rev. Biol. 1991. V. 66. P. 1–22.
  157. Xue C., Zhong Z., Ye S. et al. Association between the overexpression of PBOV1 and the prognosis of patients with hepatocellular carcinoma // Oncol. Lett. 2018. V. 16. P. 3401–3407.
  158. Yamamoto K., Hayashi Y., Hanada R. et al. Mass screening and age-specific incidence of neuroblastoma in Saitama Prefecture, Japan // J. Clin. Oncol. 1995. V. 13. P. 2033–2038.
  159. Zhai L.Q., Wang X.X., Qu C.X. et al. A long non-coding RNA, ELFN1-AS1, sponges miR-1250 to upregulate MTA1 to promote cell proliferation, migration and invasion, and induce apoptosis in colorectal cancer // Eur. Rev. Med. Pharmacol. Sci. 2021. V. 25. P. 4655–4667.
  160. Zhang Y.E., Long M. New genes contribute to genetic and phenotypic novelties in human evolution // Curr. Opin. Genet. Dev. 2014. V. 29. P. 90–96.
  161. Zheng C., Wei Y., Zhang P. et al. CRICPR-Cas9-based functional interrogation of unconventional translatome reveals human cancer dependency on cryptic non-canonical open reading frames // Nat. Struct. Mol. Biol. 2023. V. 30. P. 1878–1892.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diagram describing the main hypothesis. A meaningless sequence X arises in the DNA of germ cells of an ancestral multicellular organism. Sequence X evolves in descendants, but is not expressed or is weakly expressed. Expression is blocked by gene competition from pre-existing genes. According to the main hypothesis, an evolutionarily new sequence X is expressed in tumor cells of inherited tumors. In some cases, weak functions are acquired by meaningless new sequences from so-called promiscuous functions. An evolutionarily new protogene X arises de novo. At the same time, weak regulation of the new function and protogene X arises. Positive selection of the new function begins, leading to an increase in the new function and its regulation. A new function, a new gene, regulatory mechanisms, and a new specialized cell type arise. Tumor cells acquire a function in the body and transform into a new type of differentiated cells. The inheritance of a new cell type in offspring is accomplished by genetic and transgenerational epigenetic mechanisms, as with pre-existing cell types. Organisms with a new cell type arise.

Download (929KB)
3. Fig. 2. Three classes of genes are required for the origin of new types of differentiated cells in evolution: oncogenes (Onc), tumor suppressor genes (TSG), and evolutionarily new genes defining new functions and new differentiated cell types (ENG) (after Kozlov, 2014, p. 114, with permission).

Download (418KB)
4. Fig. 3. Data presented in the human protein-coding TSEEN genes database.

Download (448KB)
5. Fig. 4. Network of genes - orthologs of fish TSEEN genes described in the work (Matyunina et al., 2019), involved in the development of the fat organ of mammals.

Download (51KB)
6. Fig. 5. Relationship of carcino-evo-devo theory with other biological theories: carcino-evo-devo theory unites existing biological theories and explains unexplained biological phenomena.

Download (488KB)

Copyright (c) 2024 Russian Academy of Sciences