Molecular genetic methods for detection and genotyping of human sapoviruses (review)
- Authors: Kashnikov A.Y.1, Epifanova N.V.1, Novikova N.A.1
-
Affiliations:
- Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology
- Issue: Vol 144, No 4 (2024)
- Pages: 414-423
- Section: Articles
- Submitted: 02.02.2025
- Published: 22.07.2024
- URL: https://rjdentistry.com/0042-1324/article/view/653189
- DOI: https://doi.org/10.31857/S0042132424040043
- EDN: https://elibrary.ru/PPNQYA
- ID: 653189
Cite item
Full Text
Abstract
Sapovirus (genus Sapovirus, family Caliciviridae), along with norovirus, is recognized as an important cause of acute intestinal infection (AEI) in humans. Human sapovirus strains exhibit significant genetic diversity. Currently, the existence of 18 genotypes, combined into four genogroups (GI, GII, GIV, GV), has been shown. Reverse transcription-PCR (RT-PCR) techniques are widely used for the detection of sapoviruses in clinical samples due to their high sensitivity and broad reactivity. To further characterize the identified sapoviruses, genotyping is carried out, which is the basis for constructing a classification system for human sapoviruses. The purpose of this review was to highlight modern methods for the detection and genotyping of sapoviruses based on reverse transcription polymerase chain reaction and viral genome sequencing.
Keywords
Full Text

About the authors
A. Yu. Kashnikov
Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology
Author for correspondence.
Email: a.kashn@yandex.ru
Russian Federation, Nizhny Novgorod
N. V. Epifanova
Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology
Email: a.kashn@yandex.ru
Nizhny Novgorod
N. A. Novikova
Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology
Email: a.kashn@yandex.ru
Russian Federation, Nizhny Novgorod
References
- Епифанова Н.В., Луковникова Л.Б., Новикова Н.А. Молекулярная диагностика норовирусной и саповирусной инфекции у детей с гастроэнтеритом // Сб. науч. тр. / Ред. Е.И. Ефимов. НН: ННИИЭМ им. акад. И.Н. Блохиной, 2009. С. 133–137.
- Луковникова Л.Б., Епифанова Н.В., Новиков Д.В., Новикова Н.А. Генетическое разнообразие калицивирусов человека, обнаруженных у детей с гастроэнтеритом в Нижнем Новгороде // Вопр. вирусол. 2009. Т. 54 (6). С. 24–28 [Lukovnikova L.B., Epifanova N.V., Novikov D.V., Novikova N.A. Genetic diversity of human caliciviruses found in children with gastroenteritis in Nizhny Novgorod // Vopr. Virol. 2009. Т. 54 (6). С. 24–28. In Russ].
- Подколзин А.Т., Мухина А.А., Шипулин Г.А. и др. Первый опыт выявления саповирусов у детей с острыми кишечными инфекциями в Москве в 2002–2003 гг. // Генодиагностика инфекционных болезней. Т. 2 (5) / Мат. V Всерос. науч.-практ. конф. (Москва, 19–21 октября 2004 г.). М.: Медицина для всех, 2004. С. 109–110 [Podkolzin A.T., Mukhina A.A., Shipulin G.A. et al. The first experience of identifying sapoviruses in children with acute intestinal infections in Moscow in 2002–2003 // Gene diagnostics of infectious diseases. 2004. V. 2 (5). P. 109–110. In Russ.].
- Сагалова О.И. Клинико-иммунологическая характеристика кишечных инфекций вирусной этиологии у взрослых // Автореф. дис… док. мед. наук. М.: РМАНПО, 2009. 43 с. https://viewer.rsl.ru/ru/rsl01003479765?page=1&rotate=0&theme=white
- Сагалова О.И., Подколзин А.Т., Абрамычева Н.Ю. и др. Роль саповирусов в этиологии диарейных заболеваний у взрослых // 75 лет кафедры инфекционных болезней РМАНПО / Сб. науч. тр. М.: РМАНПО, 2008. С. 125–128.
- Balázs B., Boros Á., Pankovics P. et al. Detection and complete genome characterization of a genogroup X (GX) sapovirus (family Caliciviridae) from a golden jackal (Canisaureus) in Hungary // Arch. Virol. 2024. V. 169 (5). P. 100. https://doi.org/10.1007/s00705-024-06034-2
- Becker-Dreps S., González F., Bucardo F. Sapovirus: an emerging cause of childhood diarrhea // Curr. Opin. Infect. Dis. 2020. V. 33. P. 388–397. https://doi.org/10.1097/QCO.0000000000000671
- Berke T., Golding B., Jiang X. et al. Phylogenetic analysis of the caliciviruses // J. Med. Virol. 1997. V. 52 (4). P. 419–424. https://doi.org/1002/(sici)1096-9071(199708)52:4<419::aid-jmv13>3.0.co;2-b
- Birch J., Leijon M., Nielsen S.S. et al. Visualization of intestinal infections with astro- and sapovirus in mink (Neovison vison) kits by in situ hybridization // FEMS Microbes. 2021. V. 2. P. xtab005. https://doi.org/10.1093/femsmc/xtab005
- Bucardo F., Reyes Y., Svensson L., Nordgren J. Predominance of norovirus and sapovirus in Nicaragua after implementation of universal rotavirus vaccination // PLoS One. 2014. V. 9 (5). P. 1–8. https://doi.org/10.1371/journal.pone.0098201
- Chiba S., Sakuma Y., Kogasaka R. et al. An outbreak of gastroenteritis associated with calicivirus in an infant home // J. Med. Virol. 1979. V. 4. P. 249–254. https://doi.org/10.1002/jmv.1890040402
- Chiba S., Nakata S., Numata-Kinoshita K., Honma S. Sapporo virus: history and recent findings // J. Infect. Dis. 2000. V. 181 (2). P. 303–308. https://doi.org/10.1086/315574
- De Oliveira-Tozetto S., Santiso-Bellón C., Ferrer-Chirivella J. M. et al. Epidemiological and genetic characterization of sapovirus in patients with acute gastroenteritis in Valencia (Spain) // Viruses. 2021. V. 13 (2). P. 184. https://doi.org/10.3390/v13020184
- Diez-Valcarce M., Castro C.J., Marine R.L. et al. Genetic diversity of human sapovirus across the Americas // J. Clin. Virol. 2018. V. 104. P. 65–72. https://doi.org/10.1016/j.jcv.2018.05.003
- Firth C., Bhat M., Firth M.A. et al. Detection of zoonotic pathogens and characterization of novel viruses carried by commensal Rattus norvegicus in New York City // mBio. 2014. V. 5 (5). P. e01933-14. https://doi.org/10.1128/mBio.01933-14
- Gao J., Xue L., Li Y. et al. Rapid and sensitive lateral flow biosensor for the detection of GII human norovirus based on immunofluorescent nanomagnetic microspheres // J. Med. Virol. 2024. V. 96 (3). P. e29487. https://doi.org/10.1002/jmv.29487
- George U.E., Faleye T.O.C., De Coninck L. et al. Metagenomic detection and genetic characterization of human sapoviruses among children with acute flaccid paralysis in Nigeria // Pathogens. 2024. V. 13 (3). P. 264. https://doi.org/10.3390/pathogens13030264
- Hansman G.S., Guntapong R., Pongsuwanna Y. et al. Development of an antigen ELISA to detect sapovirus in clinical stool specimens // Arch. Virol. 2006. V. 151. P. 551–561. https://doi.org/10.1007/s00705-005-0630-x
- Hoque S.A., Nishimura K., Thongprachum A. et al. An increasing trend of human sapovirus infection in Japan, 2009 to 2019: an emerging public health concern // J. Infect. Public. Health. 2022. V. 15 (3). P. 315–320. https://doi.org/10.1016/j.jiph.2022.01.019
- Ji X., Guo C., Dai Y. et al. Genomic characterization and molecular evolution of sapovirus in children under 5 years of age // Viruses. 2024. V. 16 (1). P. 146. https://doi.org/10.3390/v16010146
- Jiang X., Huang P.W., Zhong W.M. et al. Design and evaluation of a primer pair that detects both Norwalk- and Sapporo-like caliciviruses by RT-PCR // J. Virol. Methods. 1999. V. 83 (1–2). P. 145–154. https://doi.org/10.1016/s0166-0934(99)00114-7
- Kogasaka R., Nakamura S., Chiba S. et al. The 33- to 39-nm virus-like particles, tentatively designed as Sapporo agent, associated with an outbreak of acute gastroenteritis // J. Med. Virol. 1981. V. 8 (3). P. 187–193.
- Kumar S., Stecher G., Li M. et al. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms // Mol. Biol. Evol. 2018. V. 35 (6). P. 1547–1549. https://doi.org/10.1093/molbev/msy096
- Kumthip K., Khamrin P., Ushijima H. et al. Genetic recombination and diversity of sapovirus in pediatric patients with acute gastroenteritis in Thailand, 2010–2018 // PeerJ. 2020. V. 8. P. e8520. https://doi.org/10.7717/peerj.8520
- Larkin M.A., Blackshields G., Brown N.P. et al. Clustal W and Clustal X version 2.0 // Bioinformatics. 2007. V. 23 (21). P. 2947–2948. https://doi.org/10.1093/bioinformatics/btm404
- Li L., Shan T., Wang C. et al. The fecal viral flora of California sea lions // J. Virol. 2011. V. 85 (19). P. 9909–9917. https://doi.org/10.1128/JVI.05026-11
- Li W., Dong S., Xu J. et al. Viral metagenomics reveals sapoviruses of different genogroups in stool samples from children with acute gastroenteritis in Jiangsu, China // Arch. Virol. 2020. V. 165 (4). P. 955–958. https://doi.org/10.1007/s00705-020-04549-y.
- Li T.C., Kataoka M., Doan Y.H. et al. Characterization of a human sapovirus genotype GII.3 strain generated by a reverse genetics system: VP2 is a minor structural protein of the virion // J. Viruses. 2022. V. 14 (8). P. 1649. https://doi.org/10.3390/v14081649
- Mai C.T.N., Ly L.T.K., Doan Y.H. et al. Prevalence and characterization of gastroenteritis viruses among hospitalized children during a pilot rotavirus vaccine introduction in Vietnam // Viruses. 2023. V. 15 (11). P. 2164. https://doi.org/10.3390/v15112164
- Mann P., Pietsch C., Liebert U.G. Genetic diversity of sapoviruses among inpatients in Germany, 2008−2018 // Viruses. 2019. V. 11 (8). P. 726. https://doi.org/10.3390/v11080726
- Matussek A., Dienus O., Djeneba O. et al. Molecular characterization and genetic susceptibility of sapovirus in children with diarrhea in Burkina Faso // Infect. Genet. Evol. 2015. V. 32. P. 396–400. https://doi.org/10.1016/j.meegid.2015.03.039
- Mombo I.M., Berthet N., Bouchier C. et al. Characterization of a genogroup I sapovirus isolated from chimpanzees in the Republic of Congo // Genome Announc. 2014. V. 2 (4). P. e00680-14. https://doi.org/10.1128/genomeA.00680-14
- Nakanishi K., Tatsumi M., Kinoshita-Numata K. et al. Full sequence analysis of the original Sapporo virus // Microbiol. Immunol. 2011. V. 55 (9). P. 657–660. https://doi.org/10.1111/j.1348-0421.2011.00358.x
- Oka T., Katayama K., Hansman G.S. et al. Detection of human sapovirus by real-time reverse transcription-polymerase chain reaction // J. Med. Virol. 2006. V. 78. P. 1347–1353. https://doi.org/10.1002/jmv.20699
- Oka T., Wang Q., Katayama K., Saifb L.J. Comprehensive review of human sapoviruses // Clin. Microbiol. Rev. 2015. V. 28 (1). P. 32–53. https://doi.org/10.1128/CMR.00011-14
- Oka T., Iritani N., Yamamoto S.P. et al. Broadly reactive real-time reverse transcription-polymerase chain reaction assay for the detection of human sapovirus genotypes // J. Med. Virol. 2019. V. 91 (3). P. 370–377. https://doi.org/10.1002/jmv.25334
- Oka T., Yamamoto S.P., Iritani N. et al. Polymerase chain reaction primer sets for the detection of genetically diverse human sapoviruses // Arch. Virol. 2020. V. 165 (10). P. 2335–2340. https://doi.org/10.1007/s00705-020-04746-9
- Okada M., Yamashita Y., Oseto M., Shinozaki K. The detection of human sapoviruses with universal and genogroup-specific primers // Arch. Virol. 2006. V. 151 (12). P. 2503–2509. https://doi.org/10.1007/s00705-006-0820-1
- Pang X.L., Preiksaitis J.K., Lee B.E. Enhanced enteric virus detection in sporadic gastroenteritis using a multi-target real-time PCR panel: a one-year study // J. Med. Virol. 2014. V. 86. P. 1594–1601. https://doi.org/10.1002/jmv.23851
- Pitkänen O., Markkula J., Hemming-Harlo M. Sapovirus, norovirus and rotavirus detections in stool samples of hospitalized finnish children with and without acute gastroenteritis // Pediatr. Infect. Dis. J. 2022. V. 41 (5). P. e203–e207. https://doi.org/10.1097/INF.0000000000003493
- Rahman R., Rahman S., Afrad Md.M.H. et al. Epidemiology and genetic characterization of human sapovirus among hospitalized acute diarrhea patients in Bangladesh, 2012–2015 // J. Med. Virol. 2021. V. 93 (11). P. 6220–6228. https://doi.org/10.1002/jmv.27125
- Romani S., Azimzadeh P., Mohebbi S.R. et al. Prevalence of sapovirus infection among infant and adult patients with acute gastroenteritis in Tehran, Iran // Gastroenterol. Hepatol. Bed. Bench. 2012. V. 5 (1). P. 43–48.
- Sanchez G.J., Mayta H., Pajuelo M.J. et al. Epidemiology of sapovirus infections in a birth cohort in Peru // Clin. Infect. Dis. 2018. V. 66 (12). P. 1858–1863. https://doi.org/10.1093/cid/cix1103
- Scheuer K.A., Oka T., Hoet A.E. et al. Prevalence of porcine noroviruses, molecular characterization of emerging porcine sapoviruses from finisher swine in the United States, and unified classification scheme for sapoviruses // J. Clin. Microbiol. 2013. V. 51 (7). P. 2344–2353. https://doi.org/10.1128/JCM.00865-13
- Stamelou E., Giantsis I.A., Papageorgiou K.V. et al. First report of canine astrovirus and sapovirus in Greece, hosting both asymptomatic and gastroenteritis symptomatic dogs // Virol. J. 2022. V. 19 (1). P. 58. https://doi.org/10.1186/s12985-022-01787-1
- Su L., Mao H., Sun Y. et al. The analysis of the genotype of sapovirus outbreaks in Zhejiang Province // Virol. J. 2023. V. 20. P. 268. https://doi.org/10.21203/rs.3.rs-3049589/v1
- Varela M.F., Rivadulla E., Lema A. et al. Human sapovirus among outpatients with acute gastroenteritis in Spain: a one-year study // Viruses. 2019. V. 11 (2). P. 144. https://doi.org/10.3390/v11020144
- Vinjé J., Estes M.K., Esteves P. et al. ICTV virus taxonomy profile: Caliciviridae // J. Gen. Virol. 2019. V. 100 (11). P. 1469–1470. https://doi.org/10.1099/jgv.0.001332
- Wang J., Li Y., Kong X. et al. Two gastroenteritis outbreaks caused by sapovirus in Shenzhen, China // J. Med. Virol. 2018. V. 90 (11). P. 1695–1702. https://doi.org/10.1002/jmv.25236
- Yan H., Yagyu F., Okitsu S. et al. Detection of norovirus (GI, GII), sapovirus and astrovirus in fecal samples using reverse transcription single-round multiplex PCR // J. Virol. Methods. 2003. V. 114 (1). P. 37–44. https://doi.org/10.1016/j.jviromet.2003.08.009
- Yan Y., Li Y., Shi W. et al. An outbreak of gastroenteritis associated with a novel GII.8 sapovirus variant-transmitted by vomit in Shenzhen, China, 2019 // BMC Infect. Dis. 2020. V. 20 (1). P. 911. https://doi.org/10.1186/s12879-020-05643-x
- Yang S., He Y., Zhang J. et al. Viral metagenomics reveals diverse viruses in the fecal samples of children with diarrhea // Virol. Sin. 2022. V. 37 (1). P. 82–93. https://doi.org/10.1016/j.virs.2022.01.012
- Yinda C.K., Conceição-Neto N., Zeller M. et al. Novel highly divergent sapoviruses detected by metagenomics analysis in straw-colored fruit bats in Cameroon // Emerg. Microbes Infect. 2017. V. 6. P. 1–7. https://doi.org/10.1038/emi.2017.20
- Zaki M.E.S., Shrief R., Hassan R.H. Molecular detection of sapovirus in children under five years with acute gastroenteritis in Mansoura, Egypt between January 2019 and February 2020 // F1000Res. 2021. V. 10. P. 123. https://doi.org/10.12688/f1000research.29991.4
- Zhuo R., Ding X., Freedman S.B. et al. Molecular epidemiology of human sapovirus among children with acute gastroenteritis in Western Canada // J. Clin. Microbiol. 2021. V. 59 (10). P. e00986-21. https://doi.org/10.1128/JCM.00986-21
Supplementary files
