Structural changes of lung tissues in the dynamics of inhalation poisoning with carbonic acid dichlorohydride

Cover Page

Cite item

Full Text

Abstract

A study of structural changes in lung tissue during the formation of organ edema due to inhalation of a lipotropic poison, carbonic acid dichloride, showed the peculiarities of the formation of acute respiratory distress syndrome. The point of application of the poison is the distal bronchioles, the epithelium of which is subject to dystrophic and necrotic changes followed by goblet metaplasia. The absorbed poison causes pronounced changes in blood microcirculation, steroid-resistant NO-mediated endothelial dysfunction with blood deposition in dilated capillaries, aggregation and lysis of erythrocytes. Changes in the vascular bed in the interalveolar septa precede the formation of an acute inflammatory reaction with the accumulation of alveolar effusion and dystrophic changes in the alveolar epithelium with cell desquamation. Among the cells of the alveolar lining, type II alveolocytes are the most vulnerable. Plasma permeation of the connective tissue of the interalveolar septa interstitium is accompanied by their infiltration with polymorphonuclear leukocytes and activation of macrophages. Desquamation of epithelial cells of the distal bronchioles leads to obstruction of their lumens and, through the valve mechanism, contributes to overextension of the alveoli with the formation of emphysema and reduction of capillary blood circulation in the alveolar septa. The observed changes determined the directions for improving the treatment of poisoning by asphyxiating poisons.

Full Text

Restricted Access

About the authors

P. A. Torkunov

Kirov Military Medical Academy

Author for correspondence.
Email: tpa4@mail.ru
Russian Federation, St. Petersburg

S. V. Chepur

State Research Testing Institute of Military Medicine

Email: tpa4@mail.ru
Russian Federation, St. Petersburg

P. D. Shabanov

Kirov Military Medical Academy

Email: tpa4@mail.ru
Russian Federation, St. Petersburg

A. V. Zemlyanoy

Scientific Research Institute of Hygiene, Occupational Pathology and Human Ecology

Email: tpa4@mail.ru
Russian Federation, Kuzmolovsky settlement, Leningrad Region

O. V. Torkunova

State Pediatric Medical University

Email: tpa4@mail.ru
Russian Federation, St. Petersburg

References

  1. Зильбер А.П. Респираторная медицина (этюды критической медицины). Петрозаводск: ПетрГУ, 1996. Т. 2. 488 с.
  2. Меркулов Г.А. Курс патогистологической техники. Л.: Медицина, 1969. 424 с.
  3. Мотавкин П.А., Гельцер Б.И. Клиническая и экспериментальная патофизиология легких. М.: Наука, 1998. 366 с.
  4. Сотников О.С. Динамика структуры живого нейрона. Л.: Наука, 1985. 160 с.
  5. Толкач П.Г. Изучение механизма токсического действия дихлорангидрида угольной кислоты // Токсикол. вестн. 2020. № 3 (162). С. 26–32.
  6. Толкач П.Г., Башарин В.А., Чепур С.В. и др. Ультраструктурные изменения аэрогематического барьера крыс при острой интоксикации продуктами пиролиза фторопласта // Бюл. эксп. биол. мед. 2020. Т. 169 (2). С. 235–241.
  7. Торкунов П.А., Шабанов П.Д., Земляной А.В. Фармакологическая коррекция токсического отека легких. СПб.: Элби-СПб., 2008. 176 с.
  8. Чучалин А.Г. Отек легких: физиология легочного кровообращения и патофизиология отека легких // Пульмонология. 2005. № 4. С. 9–18.
  9. Aggarwal S., Jilling T., Doran S. et al. Phosgene inhalation causes hemolysis and acute lung injury // Toxicol. Lett. 2019. V. 312. P. 204–213. https://doi.org/10.1016/j.toxlet.2019.04.019
  10. Cao C., Zhang L., Shen J. Phosgene-induced acute lung injury: approaches for mechanism-based treatment strategies // Front. Immunol. 2022. V. 13. P. 917395. https://doi.org/10.3389/fimmu.2022.917395
  11. Chaudhuri D., Sasaki K., Karhar A. et al. Corticosteroids in COVID-19 and non-COVID-19 ARDS: a systematic review and meta-analysis // Intensive Care Med. 2021. V. 47. P. 521–537. https://doi.org/10.1007/s00134-021-06394-2
  12. He D.-K., Xu N., Shao Y.-R., Shen J. NLRP3 gene silencing ameliorates phosgene-induced acute lung injury in rats by inhibiting NLRP3 inflammasome and proinflammatory factors, but not anti-inflammatory factors // J. Toxicol. Sci. 2020. V. 45 (10). P. 625–637. https://doi.org/10.2131/jts.45.625
  13. Lu Q., Huang S., Meng X. et al. Mechanism of phosgene-induced acute lung injury and treatment strategy // Int. J. Mol. Sci. 2021. V. 22. P. 10933. https://doi.org/10.3390/ijms222010933
  14. Pauluhn J. Phosgene inhalation toxicity: update on mechanisms and mechanism-based treatment strategies // Toxicology. 2021. V. 450. P. 152682. https://doi.org/10.1016/j.tox.2021.152682
  15. Pauluhn J. Derivation of thresholds for inhaled chemically reactive irritants: searching for substance-specific common denominators for read-across prediction // Regul. Toxicol. Pharmacol. 2022. V. 130. P. 105131. https://doi.org/10.1016/j.yrtph.2022.105131
  16. Radbel J., Laskin D.L., Laskin J.D., Kipen H.M. Disease-modifying treatment of chemical threat agent-induced acute lung injury // Ann. N.Y. Acad. Sci. 2020. V. 1480 (1). P. 14–29. https://doi.org/10.1111/nyas.14438
  17. Shao Y., Jiang Z., He D., Shen J. NEDD4 attenuates phosgene-induced acute lung injury through the inhibition of Notch1 activation // J. Cell. Mol. Med. 2022. V. 26 (10). P. 2831–2840. https://doi.org/10.1111/jcmm.17296
  18. Tiwari R.R., Raghavan S. Chronic low-dose exposure to highly toxic gas phosgene and its effect on peak expiratory flow rate // Indian J. Occup. Environ. Med. 2022. V. 26 (3). P. 189–192. https://doi.org/10.4103/ijoem.ijoem_417_20

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The structure of the lung parenchyma in mice 30 min after inhalation exposure to carbonic acid dichloride at a dose of 1 LCt50. Hematoxylin and eosin staining. (a) - plethora of capillaries of the septa prolapsing into the lumen of the alveoli (object ×20); (b) - plethora of venous vessels with swelling of the septa and oozing of protein-containing fluid into the lumen of the alveoli (object ×40); (c) - staged changes in the respiratory alveolocyte due to the colloid-osmotic state of the cytosol and underlying connective tissue; (d) - changes in membrane-bound and luminal cells of the alveolar epithelium and macrophages (object ×100); (d) - karyorrhexis in endothelial cells and infiltration of the septum by polymorphonuclear leukocytes involved in the resorption of alveolar effusion (object ×100).

Download (1MB)
3. Fig. 2. The structure of the lung parenchyma in mice 3 hours after inhalation exposure to carbonic acid dichloride at a dose of 1 LCt50. Hematoxylin and eosin staining. (a) - diagram of the developing histopathological changes (explanations in the text); (b) - plasmalemmal septal venules (object ×40); (c) - expansion of the alveolar lumens with resorbable protein effusion with plethora of partially thrombosed septal vessels (object ×20); (d) - dystrophic changes in the bronchial epithelium with apical necrosis, with rejection of a part of the cell cytosol and death of alveolocytes as part of the epithelial layer (object ×100); (d) — infiltration of the interalveolar septa by polymorphonuclear leukocytes (object ×100); (e) — microthrombi in the capillaries of the septa and foci of erythrocyte diapedesis into the lumen of the alveoli (object ×40).

Download (2MB)
4. Fig. 3. The structure of the lung parenchyma in mice 1 day after inhalation exposure to carbonic acid dichloride at a dose of 1 LCt50. Hematoxylin and eosin staining. (a) — diagram of developing histopathological changes (explanation in the text); (b) — metaphase “plates” in the surviving alveolocytes of the acinar ducts (object ×100); (c) — dystonic expansion of septal vessels, accompanied by dystrophic changes in the cells of the muscular layer of the vessel and plasma impregnation of the paravasal connective tissue (object ×40); (d) — dystrophic changes in cells and desquamation of the epithelium into the lumen of the alveoli with resorption of effusion by activated forms of macrophages (object ×100); (d) — emphysema of alveoli free of effusion, in the overstretched septa of which a reduction of capillaries with small aggregates of lysed erythrocytes was observed (object ×20); (e) — dystrophic changes and death of bronchial epithelial cells with the accumulation of cellular detritus seeded with coccal flora in the lumen (object ×100).

Download (1MB)

Copyright (c) 2024 Russian Academy of Sciences