Комплексы полианилина с сульфированным полисульфоном, их структура и сенсорные свойства

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Химическую полимеризацию анилина проводили в водных растворах сульфированного полисульфона (СПС) при различных соотношениях концентраций анилина и сульфогрупп СПС. Ход полимеризации был исследован методом in situ спектроскопии в УФ-видимой-ближней ИК-областях. Показано, что при увеличении концентрации СПС скорость полимеризации увеличивается. Пленки вододиспергируемых комплексов полианилина (ПАНИ) с СПС были получены методом пульверизации. Впервые изучены электронная и химическая структура, морфология и сенсорные (аммиак) свойства пленок комплексов ПАНИ-СПС.

Full Text

Restricted Access

About the authors

В. А. Кабанова

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН

Author for correspondence.
Email: kabanovavar@gmail.com
Russian Federation, Москва

О. Л. Грибкова

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН

Email: kabanovavar@gmail.com
Russian Federation, Москва

С. И. Позин

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН

Email: kabanovavar@gmail.com
Russian Federation, Москва

В. А. Тверской

МИРЭА – Российский технологический университет

Email: kabanovavar@gmail.com

Институт тонких химических технологий имени М.В. Ломоносова

Russian Federation, Москва

A. A. Некрасов

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН

Email: kabanovavar@gmail.com
Russian Federation, Москва

References

  1. Ciric-Marjanovic G. Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications // Synthetic Metals. 2013. Vol. 177. P. 1–47.
  2. Gribkova O.L., Nekrasov A.A., Trchova M., et al. Chemical synthesis of polyaniline in the presence of poly(amidosulfonic acids) with different rigidity of the polymer chain // Polymer. 2011. Vol. 52, № 12. P. 2474–2484.
  3. Boeva Z.A., Sergeyev V.G. Polyaniline: Synthesis, properties, and application // Polymer Science – Series C. 2014. Vol. 56, № 1. P. 144–153.
  4. Sapurina I.Y., Kompan M.E., Malyshkin V.V., et al. Properties of proton-conducting nafion-type membranes with nanometer-thick polyaniline surface layers // Russian Journal of Electrochemistry. 2009. Vol. 45, № 6. P. 697–706.
  5. Berezina N.P., Shkirskaya S.A., Kolechko M.V., et al. Barrier effects of polyaniline layer in surface modified MF-4SK/Polyaniline membranes // Russian Journal of Electrochemistry. 2011. Vol. 47, № 9. P. 995–1005.
  6. Berezina N.P., Kononenko N.A., Sytcheva A.A.R., et al. Perfluorinated nanocomposite membranes modified by polyaniline: Electrotransport phenomena and morphology // Electrochimica Acta. 2009. Vol. 54, № 8. P. 2342–2352.
  7. Lysova A.A., Stenina I.A., Dolgopolov S.V., et al. Asymmetric ion transport in perfluorinated membranes MF-4SC doped with polyaniline // Doklady Physical Chemistry. 2009. Vol. 427, № 2. P. 142–145.
  8. Исакова А.А., Грибкова О.Л., Алиев А.Д. и др. Синтез полианилина в пленках полиэтилена с привитым сульфированным полистиролом и свойства этих пленок // Физикохимия поверхности и защита материалов. 2020. Vol. 56, № 4. P. 406–415.
  9. Dizman C., Tasdelen M.A., Yagci Y. Recent advances in the preparation of functionalized polysulfones // Polymer International. 2013. Vol. 62, № 7. P. 991–1007.
  10. Goel V., Tanwar R., Mandal U. Performance enhancement of commercial ultrafiltration polysulfone membrane via in situ polymerization of aniline using copper chloride as a catalyst // Journal of Chemical Technology and Biotechnology. 2021. Vol. 96, № 2. P. 502–513.
  11. Sarihan A. Development of high-permeable PSf/PANI-PAMPSA composite membranes with superior rejection performance // Materials Today Communications. 2020. Vol. 24. P. 101104.
  12. Wu H., Shi C., Zhu Q., et al. Capillary-driven blood separation and in-situ electrochemical detection based on 3D conductive gradient hollow fiber membrane // Biosensors and Bioelectronics. 2021. Vol. 171. P. 112722.
  13. Abu-Thabit N., Umar Y., Ratemi E., et al. A Flexible Optical pH Sensor Based on Polysulfone Membranes Coated with pH-Responsive Polyaniline Nanofibers // Sensors. 2016. Vol. 16, № 7. P. 986.
  14. Lu Y., Wang L., Zhao B., et al. Fabrication of conducting polyaniline composite film using honeycomb ordered sulfonated polysulfone film as template // Thin Solid Films. 2008. Vol. 516, № 18. P. 6365–6370.
  15. Bai H., Shi G. Gas sensors based on conducting polymers // Sensors. 2007. Vol. 7, № 3. P. 267–307.
  16. Jin Z., Su Y., Duan Y. Development of a polyaniline-based optical ammonia sensor // Sensors and Actuators B: Chemical. 2001. Vol. 72, № 1. P. 75–79.
  17. Kebiche H., Debarnot D., Merzouki A., et al. Relationship between ammonia sensing properties of polyaniline nanostructures and their deposition and synthesis methods // Analytica Chimica Acta. 2012. Vol. 737. P. 64–71.
  18. Li D.Y., Liu L.X., Wang Q.W., et al. Functional Polyaniline/MXene/Cotton Fabrics with Acid/Alkali-Responsive and Tunable Electromagnetic Interference Shielding Performances // ACS Applied Materials and Interfaces. 2022. Vol. 14, № 10. P. 12703–12712.
  19. Duboriz I., Pud A. Polyaniline/poly(ethylene terephthalate) film as a new optical sensing material // Sensors and Actuators, B: Chemical. 2014. Vol. 190. P. 398–407.
  20. Christie S., Scorsone E., Persaud K., et al. Remote detection of gaseous ammonia using the near infrared transmission properties of polyaniline // Sensors and Actuators B: Chemical. 2003. Vol. 90, № 1–3. P. 163–169.
  21. Mohammed H.A., Rahman N.A., Ahmad M.Z., et al. Sensing Performance of Modified Single Mode Optical Fiber Coated with Nanomaterials-Based Ammonia Sensors Operated in the C-Band // IEEE Access. 2019. Vol. 7. P. 5467–5476.
  22. Gribkova O., Kabanova V., Tverskoy V., et al. Comparison of Optical Ammonia-Sensing Properties of Conducting Polymer Complexes with Polysulfonic Acids // Chemosensors. 2021. Vol. 9, № 8. P. 206.
  23. Komkova E.N., Wessling M., Krol J., et al. Influence of the nature of polymer matrix and the degree of sulfonation on physicochemical properties of membranes // Vysokomolekularnye Soedineniya. Ser.A Ser.B Ser.C – Kratkie Soobshcheniya. 2001. Vol. 43, № 3. P. 486–495.
  24. Brousse C., Chapurlat R., Quentin J.P. New membranes for reverse osmosis I. Characteristics of the base polymer: sulphonated polysulphones // Desalination. 1976. Vol. 18, № 2. P. 137–153.
  25. Gribkova O.L., Kabanova V.A., Nekrasov A.A. Electrodeposition of thin films of polypyrrole-polyelectrolyte complexes and their ammonia-sensing properties // Journal of Solid State Electrochemistry. 2020. Vol. 24, № 11–12. P. 3091–3103.
  26. Rabinovich V. A., Yakovlevich K.Z. Kratkii khimicheskii spravochnik (Short chemical handbook). Khimiya. Moscow: Khimiya, 1977. 376 p.
  27. Stejskal J., Kratochvíl P., Radhakrishnan N. Polyaniline dispersions 2. UV—Vis absorption spectra // Synthetic Metals. 1993. Vol. 61, № 3. P. 225–231.
  28. Gospodinova N., Terlemezyan L. Conducting polymers prepared by oxidative polymerization: Polyaniline // Progress in Polymer Science (Oxford). 1998. Vol. 23, № 8. P. 1443–1484.
  29. Sapurina I.Y., Stejskal J. The effect of pH on the oxidative polymerization of aniline and the morphology and properties of products // Russian Chemical Reviews. 2011. Vol. 79, № 12. P. 1123–1143.
  30. Kuo C.W., Wen T.C. Dispersible polyaniline nanoparticles in aqueous poly(styrenesulfonic acid) via the interfacial polymerization route // European Polymer Journal. 2008. Vol. 44, № 11. P. 3393–3401.
  31. Iakobson O.D., Gribkova O.L., Nekrasov A.A., et al. A stable aqueous dispersion of polyaniline and polymeric acid // Protection of Metals and Physical Chemistry of Surfaces. 2016. Vol. 52, № 6. P. 1005–1011.
  32. Nekrasov A.A., Gribkova O.L., Iakobson O.D., et al. Raman spectroelectrochemical study of electrodeposited polyaniline doped with polymeric sulfonic acids of different structures // Chemical Papers. 2017. Vol. 71, № 2. P. 449–458.
  33. Morávková Z., Dmitrieva E. Structural changes in polyaniline near the middle oxidation peak studied by in situ Raman spectroelectrochemistry // Journal of Raman Spectroscopy. 2017. Vol. 48, № 9. P. 1229–1234.
  34. Trchová M., Morávková Z., Bláha M., et al. Raman spectroscopy of polyaniline and oligoaniline thin films // Electrochimica Acta. 2014. Vol. 122. P. 28–38.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structural formula of sulfonated polysulfone.

Download (38KB)
3. Fig. 2. Changes in electronic absorption spectra during the polymerization of aniline in the presence of SPS at [Aniline]/[-SO3H] = 1/3 mol/g-eq. Arrows show the change in absorption of the solution in the regions of characteristic wavelengths.

Download (181KB)
4. Fig. 3. Curves of changes in optical absorption obtained during the polymerization of aniline in the presence of HPS: at [Aniline]/[-SO3H] = 1:2 mol/g-eq, at wavelengths of 370 (1), 690 (2) and 800 nm (3) (a) and at [Aniline]/[-SO3H] equal to 1:1 (1), 1:2 (2), 1:3 (3), 1:4 (4), 1:6 (5) at a wavelength of 690 nm (b).

Download (179KB)
5. Fig. 4. Electronic absorption spectra of PANI-SPS complex films obtained at [Aniline]/[-SO3H] equal to 1:1 (1), 1:2 (2), 1:3 (3), 1:4 (4), 1:6 (5) mol/g-eq.

Download (82KB)
6. Fig. 5. Normalized (line intensity 1156 cm–1 – coplanar deformation vibrations of C–H bonds in aromatic rings of PANI) Raman spectra upon excitation with a 785 nm laser of PANI-SPS films deposited on glass substrates by the spraying method.

Download (267KB)
7. Fig. 6. Images of the surface of PANI films applied by spraying onto glass: AFM (a–g), optical microscopy (d–f). The ratio of components is 1:3 (a, b), 1:6 (c, d), and 1:1 (d, f).

Download (2MB)
8. Fig. 7. Changes in the electronic absorption spectra of the film obtained at [Aniline]/[-SO3H] = 1:6 mol/g-eq. in air with an ammonia concentration of 263 ppm. Arrows indicate the course of changes in the regions of characteristic wavelengths.

Download (62KB)
9. Fig. 8. Relative change in time of optical absorption at a wavelength of 810 nm under the influence of ammonia vapor with a concentration of 263 ppm (a) and dependences of the maximum response amplitude (A) on the ammonia concentration (b) for films of PANI-SPS complexes synthesized at [Aniline]/[-SO3H] equal to 1 : 1 (1), 1 : 2 (2), 1 : 3 (3), 1 : 4 (4), 1 : 6 (5) mol/g-eq.

Download (252KB)

Copyright (c) 2025 Russian Academy of Sciences