Фотоэлектрокаталитическая активность тонкопленочных фотоанодов WO3

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Тонкие пленки из оксида вольфрама были получены путем катодного электроосаждения из электролита на основе вольфрамата натрия при потенциале −0.45 В отн. Ag/AgCl электрода сравнения. Пленка фотоанода WO3 состоит из моноклинной модификации (epsilon-WO3) с размером кристаллитов 10–12 нм. Изучена электрокаталитическая активность WO3 фотоанода в реакциях фотоэлектрохимического окисления одно- двух- и трехатомных спиртов. Показано, что фотоэлектрокаталитическая активность фотоанодов из WO3 объясняется увеличением скорости фотоэлектроокисления симбатной с количеством адсорбционных мест спирта.

Полный текст

Доступ закрыт

Об авторах

В. В. Емец

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН (ИФХЭ)

Автор, ответственный за переписку.
Email: victoremets@mail.ru
Россия, Москва

В. А. Гринберг

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН (ИФХЭ)

Email: victoremets@mail.ru
Россия, Москва

А. А. Аверин

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН (ИФХЭ)

Email: victoremets@mail.ru
Россия, Москва

А. А. Ширяев

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН (ИФХЭ)

Email: victoremets@mail.ru
Россия, Москва

Список литературы

  1. Valentin C. Di, Pacchioni G. // Acc. Chem. Res. 2014. V. 47. № 11. P. 3233–3241.
  2. Mi Q., Zhanaidarova A., Brunschwig B.S. et al. // Energy Environ. Sci. 2012. V. 5. P. 5694–5700.
  3. Huang Z.F., Song J., Pan L. et al. // Adv. Mater. 2015. V. 27. P. 5309–5327.
  4. Solarska R., Alexander B.D., Braun A. et al. // Electrochimica Acta. 2010. V. 55. P. 7780–7787.
  5. Ng C., Ye C.H., Ng Y.H., Amal R. // Crystal Growth & Design. 2010. V. 10. P. 3794–3801.
  6. Amano F., Li D., Ohtani B. // Chem. Comm. 2010. V. 46. P. 2769–771.
  7. Yang B., Li H.J., Blackford M. et al. // Curr. Appl. Phys. 2006. V. 6. P. 436–439.
  8. Sun Y., Murphy C.J., Reyes-Gil K.R. et al. // Int. J. Hydrogen Energy. 2009. V. 34. P. 8476–8484.
  9. Cole B., Marsen B., Miller E. et al. // J. Phys. Chem. C. 2008. V. 112. P. 5213–5220.
  10. Wang H., Quan X., Zhang Y., Chen S. // Nanotechnol. 2008. V. 19. P. 065704.
  11. Fulop G.F., Taylor R.M. // Annu Rev. Mater. Sci. 1985. V. 15. P. 197–210.
  12. Kwong W.L., Savvides N., Sorrell C.C. // Electrochimica Acta. 2012. V. 75. P. 371–380.
  13. Baeck S.H., Jaramillo T., Stucky G.D., McFarland E.W. // Nano Lett. 2002. V. 2. P. 831–834.
  14. Soliman H.M.A., Kashyout A.B., El Nouby M.S. et al. // J. Mater. Sci-Mater. Electron. 2010. V. 21. P. 1313–1321.
  15. Deepa M., Srivastava A.K., Agnihotry S.A. // Acta Mater. 2006. V. 54. P. 4583–4595.
  16. Deepa M., Srivastava A.K., Saxena T.K., Agnihotry S.A. // Appl. Surface Sci. 2005. V. 252. P. 1568–1580.
  17. Wentworth W.E., Chen P.J. // Solar Energy. 1994. P. 52253–52263.
  18. Martinez-de la Cruz A., Martinez D.S., Cuellar E.L. // Solid State Sci. 2010. V. 12. P. 88–94.
  19. Kwong W.L., Qiu H., Nakaruk A. et al. // Energy Procedia. 2013. V. 34. P. 617–626.
  20. Sayama K., Hayashi H., Arai T. et al. // Appl. Catal. B-Environ. 2010. V. 94. P. 150–157.
  21. Liu Y., Ohko Y., Zhang R.Y. et al. // J. Hazard. Mater. 2010. V. 184. P. 386–391.
  22. Kim J., Lee C.W., Choi W. // Environ. Sci. Technol. 2010. V. 44. P. 6849–6854.
  23. Sun S., Wang W., Zeng S. et al. // J. Hazard. Mater. 2010. V. 178. P. 427–433.
  24. Jansson I., Yoshiri K., Hori H. et al. // Appl. Catal. A-Gen. 2016. V. 521. P. 208–219.
  25. Ghoreishi K.B., Asim N., Ramli Z.A. et al. // J. Porous Mater. 2016. V. 23 P. 629–637.
  26. Sudrajat H., Babel S. // Sol. Energ. Mat. Sol. C. 2016. V. 149. P. 294–303.
  27. Dozzi M.V., Marzorati S., Longhi M. et al. // Appl. Catal. B-Environ. 2016. V. 186. P. 157–165.
  28. Alexander B.D., Kulesza P.J., Rutkowska I. et al. // J. Mater. Chem. 2008. V. 18. P. 2298–2303.
  29. Solarska R., Jurczakowski R., Augustynski J. // Nanoscale. 2012. V. 4. P. 1553–1556.
  30. Sarnowska M., Bienkowski K., Barczuk P.J. et al. // Adv. Energy Mater. 2016. P. 1600526.
  31. Feng X., Chen Y., Qin Z. et al. // Appl. Mater. Interfaces. 2016. V. 8. P. 18089–18096.
  32. Fabrega C., Murcia-Lopez S., Monllor-Satoca D. et al. // Appl. Catal. B-Environ. 2016. V. 189. P. 133–140.
  33. Hu C., Kelm D., Schreiner M. et al. // Chem. Sus. Chem. 2015. V. 8. P. 4005–4015.
  34. Yang J., Liao W., Liu Y. et al. // Electrochimica Acta. 2014. V. 144. P. 7–15.
  35. Tsarenko A., Gorshenkov M., Yatsenko A. et al. // ChemEngineering. 2022. V. 6. P. 31.
  36. Raptisa D., Dracopoulos V., Lianosa P. // Journal of Hazardous Materials. 2017. V. 333. P. 259–264.
  37. Yu J., González-Cobos J., Dappozze F. et al. // Applied Catalysis B: Environmental. 2022. V. 318. P. 121843.
  38. McCrory C.C.L., Jung S. et al. // J. AM. Chem. Soc. 2015. V. 137. P. 4347–4357.
  39. Liu Y., Li J., Li W. et al. // Electrochimica Acta. 2016. V. 210. P. 251–260.
  40. Pauporte T. // J. Electrochem. Soc. 2002. V. 149. P. C539–C545.
  41. Daniel M.F., Desbat B., Lassegues J.C. et al. // J. Solid State Chem. 1987. V. 67. P. 235–247.
  42. Grinberg V.A., Emets V.V., Mayorova N.A. et al. // Russ. J. Electrochem. 2022. V. 58. P. 667–675.
  43. Grinberg V.A., Emets V.V., Mayorova N.A. et al. // Catalysts. 2022. V. 12. P. 1243.
  44. Grinberg V.A., Emets V.V., Mayorova N.A. et al. // Int. J. Mol. Sci. 2023. V. 24. P. 14046.
  45. Grinberg V.A., Emets V.V., Modestov A.D. et al. // Coatings. 2023. V. 13. P. 1080.
  46. Grinberg V.A., Emets V.V., Modestov A.D. et al. // Catalysts. 2023. V. 13. P. 1397.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Рамановский спектр (а) и рентгеновская дифрактограмма (б) пленочного образца WO3/FTO.

Скачать (123KB)
3. Рис. 2. Абсорбционный спектр (a) и зависимость (αhν)2 от энергии фотона hν (b) для пленочного фотоанода WO3(50 мин)/FTO.

Скачать (113KB)
4. Рис. 3. Вольтамограммы пленочных фотоанодов WO3(25 мин)/FTO (а) и WO3(50 мин)/FTO (б), полученные в темновых условиях и при освещении видимым светом с плотностью мощности 100 мВт cм−2 в водных растворах: (1) 0.5 M Na2SO4; (2) 0.5 M Na2SO4 + 20% CH3OH; (3) 0.5 M Na2SO4 + 20% C2H4(OH)2; и (4) 0.5 M Na2SO4 + 20% C3H5(OH)3. Скорость сканирования потенциала 10 мВс–1.

Скачать (225KB)
5. Рис. 4. Транзиенты фототоков, полученные при потенциале E = 0.6 В отн. Ag/AgCl пленочного фотоанода WO3(50 мин)/FTO в темновых условиях и при освещении видимым светом с плотностью мощности 100 мВт cм−2 в водных растворах: (1) 0.5 M Na2SO4; (2) 0.5 M Na2SO4 + 20% CH3OH; (3) 0.5 M Na2SO4 + 20% C2H4(OH)2; и (4) 0.5 M Na2SO4 + 20% C3H5(OH)3.

Скачать (139KB)
6. Рис. 5. IPCE% спектр пленочного фотоанода WO3(50 мин)/FTO при потенциале E = 0.7 В в водном растворе 0.5 M Na2SO4 + 20% C3H5(OH)3.

Скачать (62KB)
7. Рис. 6. IMPS-зависимости для пленочного фотоанода WO3(50 мин)/FTO при потенциале 0.7 В в водных растворах: (1) 0.5 M Na2SO4; (2) 0.5 M Na2SO4 + 20% C3H5(OH)3. Освещение монохроматическим светом 407 нм. Мощность освещения 14 мВт см−2.

Скачать (97KB)

© Российская академия наук, 2024