Quantum-Chemical Simulation of 13C NMR Chemical Shifts of Fullerene C60 Exo-Derivatives
- Authors: Tulyabaev A.R.1, Khalilov L.M.1
- 
							Affiliations: 
							- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences
 
- Issue: Vol 97, No 9 (2023)
- Pages: 1272-1277
- Section: STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
- Submitted: 26.02.2025
- Published: 01.09.2023
- URL: https://rjdentistry.com/0044-4537/article/view/668665
- DOI: https://doi.org/10.31857/S004445372309025X
- EDN: https://elibrary.ru/XPRCMG
- ID: 668665
Cite item
Abstract
The 13C NMR chemical shifts of fullerene C60 exo-derivatives were calculated using quantum chemical hybrid functionals combined with Pople, Dunning correlation-consistent, and def2-TZVP split valence basis sets taking into account the solvent effect (polarizable continuum model). A relationship between theoretical and experimental 13C NMR chemical shifts (CSs) is assessed quantitatively to select a functional/basis set combination. It is found that the CAM-B3LYP/6-31G and M06L/6-31G combinations have the best convergence with experimental data in modeling the 13С NMR CSs of sp3 fullerene carbon atoms in С60 derivatives, whereas X3LYP/6-31G and CAM-B3LYP/6-31G(d) in modeling the 13С NMR CSs of their sp2 fullerene carbon atoms.
Keywords
About the authors
A. R. Tulyabaev
Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences
														Email: tulebeich@gmail.com
				                					                																			                												                								450075, Ufa, Russia						
L. M. Khalilov
Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences
							Author for correspondence.
							Email: tulebeich@gmail.com
				                					                																			                												                								450075, Ufa, Russia						
References
- Hauke F., Chen Z.-F., Hirsch A. // Polish J. Chem. 2007. V. 81. № 5–6. P. 973.
- Fileti E.E., Rivelino R. // Chem. Phys. Lett. 2009. V. 467. № 4–6. P. 339.
- Liu T., Misquitta A.J., Abrahams I. et al. // Carbon. 2021. V. 173. № P. 891.
- Kaminský J., Buděšínský M., Taubert S. et al. // Phys. Chem. Chem. Phys. 2013. V. 15. № 23. P. 9223.
- Sun G., Kertesz M. // J. Phys. Chem. A. 2000. V. 104. № 31. P. 7398.
- Sun G., Kertesz M. // Ibid. 2001. V. 105. № 22. P. 5468.
- Sun G., Kertesz M. // Chem. Phys. 2002. V. 276. № 2. P. 107.
- Tulyabaev A.R., Khalilov L.M. // Comput. Theor. Chem. 2011. V. 976. № 1–3. P. 12.
- Tulyabaev A.R., Kiryanov I.I., Samigullin I.S. et al. // Int. J. Quantum Chem. 2017. V. 117. № 1. P. 7.
- Frisch M.J., Trucks G.W., Schlegel H.B. et al., Gaussian 09. 2009, Gaussian, Inc.: Wallingford, CT, USA.
- Meier M.S., Spielmann H.P., Bergosh R.G. et al. // J. Am. Chem. Soc. 2002. V. 124. № 27. P. 8090.
- Meier M.S., Spielmann H.P., Bergosh R.G. et al. // J. Org. Chem. 2003. V. 68. № 20. P. 7867.
- Djojo F., Herzog A., Lamparth I. et al. // Chem. Eur. J. 1996. V. 2. № 12. P. 1537.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					





