Моделирование адсорбции лития в 4H–SiC, переноса электронов и термодинамических функций соединений системы Si–C–Li
- Authors: Асадов S.M.1,2, Мустафаева S.N.3, Лукичев V.Ф.4
-
Affiliations:
- Министерство науки и образования Азербайджана, Институт катализа и неорганической химии им. М. Ф. Нагиева
- Министерство науки и образования Азербайджана, Научно-исследовательский институт “Геотехнологические проблемы нефти, газа и химия (НИИ ГПНГХ АГУНП)”
- Министерство науки и образования Азербайджана, Институт физики
- Российская академия наук, Физико-технологический институт им. К. А. Валиева
- Issue: Vol 98, No 11 (2024)
- Pages: 24-33
- Section: ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА И ТЕРМОХИМИЯ
- Submitted: 29.05.2025
- Published: 15.11.2024
- URL: https://rjdentistry.com/0044-4537/article/view/681004
- DOI: https://doi.org/10.31857/S0044453724110039
- EDN: https://elibrary.ru/FAMTGQ
- ID: 681004
Cite item
Abstract
Используя теорию функционала плотности (DFT) исследованы адсорбционные, электронные и термодинамические свойства 2×2×1 и 3×3×1 суперъячеек бинарных соединений AnBm = 4H–SiC , a – Li2C2, LinSim) системы Si–C–Li. Установлено, что теоретическая емкость гексагонального политипа 4H–SiC, больше, чем у графита (370 мА⋅ч/г), используемого в качестве анодного материала для литий-ионных аккумуляторов. Кристаллические соединения AnBm обладают электронной проводимостью. При DFT-расчетах использовали обменно-корреляционный функционал в рамках обобщенного градиентного приближения (GGA PBE). Рассчитаны параметры кристаллической структуры, энергия адсорбции адатома Liads на подложке 4H–SiC, электронная зонная структура и термодинамические свойства суперъячеек соединений AnBm . Определены термодинамически выгодное расположение Liads и стабильная конфигурация суперъячеек 4H–SiC
Full Text

About the authors
S. M. Асадов
Министерство науки и образования Азербайджана, Институт катализа и неорганической химии им. М. Ф. Нагиева; Министерство науки и образования Азербайджана, Научно-исследовательский институт “Геотехнологические проблемы нефти, газа и химия (НИИ ГПНГХ АГУНП)”
Author for correspondence.
Email: mirasadov@gmail.com
Azerbaijan, AZ-1143 Баку; AZ-1010 Баку
S. N. Мустафаева
Министерство науки и образования Азербайджана, Институт физики
Email: mirasadov@gmail.com
Azerbaijan, AZ-1143 Баку
V. Ф. Лукичев
Российская академия наук, Физико-технологический институт им. К. А. Валиева
Email: salim7777@gmail.com
Russian Federation, 117218 Москва
References
- Kimoto T., Cooper J.A. Fundamentals of Silicon Carbide Technology. Growth, Characterization, Devices, and Applications. John Wiley & Sons Singapore Pte. Ltd. 2014. 538 p. ISBN978-1-118-31352-7. https://doi.org/10.1002/9781118313534
- Fan Y., Deng C., Gao Y. et al. // Carbon. 2021. V. 177. P. 357. https://doi.org/10.1016/j.carbon.2021.02.095
- Guo J., Dong D., Wang J. et al. // Adv. Funct. Mater. 2021. 2102546. P. 1. https://doi.org/10.1002/adfm.202102546
- Huggins R.A. Advanced Batteries – Materials Science Aspects. 1st ed., Science+Business Media, LLC. New York. 2009. 474 p. ISBN-13: 978-0387764238
- Drüe M., Kozlov A., Seyring M. et al. // J. Alloys Compd. 2015. S0925838815309312. P. 1. https://doi.org/10.1016/j.jallcom.2015.08.235
- Liang S.-M., Drüe M., Kozlov A. et al. // Ibid. 2017. V. 698. P. 743. https://doi.org/10.1016/j.jallcom.2016.12.271
- Drüe M., Liang S.-M., Seyring M. et al. // Int. J. Mater. Res. 2017. V. 108. No 11. 146.111559. P. 933. https://doi.org/10.3139/146.111559
- He X., Tang A., Li Y., Zhang Y. et al. // Appl. Surf. Sci. 2021. V. 563. 150269. P. 1. https://doi.org/10.1016/j.apsusc.2021.150269
- Vasilevskiy K., Wright N.G. Ch. 1. In book: Advancing Silicon Carbide Electronics Technology II. Materials Research Foundations. 2020. V. 69. P. 1. https://doi.org/10.21741/9781644900673-1
- Kong L., Chai C., Song Y. et al. // AIP Advances. 2021. V. 11. 045107. P. 1. https://doi.org/10.1063/5.0044672
- Petersen R.J., Thomas S.A., Anderson K.J. et al. // J. Phys. Chem. C. 2022. P. 1. https://doi.org/10.1021/acs.jpcc.2c03948
- Ruschewitz U., Pöttgen R. // Z. Anorg. Allg. Chem. 1999. V. 625. No 10. P. 1599. https://doi.org/10.1002/(sici)1521-3749(199910)625:10<1599:: aid-zaac1599>3.0.co;2-j
- Kozlov A., Seyring M., Drüe M., et // J. Mater. Res. 2013. V. 104. No 11. P. 1066. https://doi.org/10.3139/146.110960
- Johanna N., Sumit K., Peter L. et al. // J. Chem. Phys. 2012. V. 137. No 22. 224507. P. 1. https://doi.org/10.1063/1.4770268
- Tian N., Gao Y., Li Y. et al. // Angew. Chem. Int. Ed. 2016. V. 5. No 2. P. 644. https://doi.org/10.1002/anie.201509083
- Ali S. // Madridge J. Nanotechnol Nanosci. 2017. V.2. No 1. P. 73. https://doi.org/10.18689/mjnn-1000113
- Gu M., He Y., Zheng J., Wang C. // Nano Energy. 2015. S221128551500350X. P. 1. https://doi.org/10.1016/j.nanoen.2015.08.025
- Guo J., Dong D., Wang J. et al. // Adv. Funct. Mater. 2021. P. 1. https://doi.org/10.1002/adfm.202102546
- Obrovac M.N., Christensen L. // Electrochem. Solid-State Lett. 2004. V. 7. No 5. P. A93. https://doi.org/10.1149/1.1652421
- Wu H., Cui Y. // Nano Today. 2012. V. 7. No 5. P. 414. https://doi.org/10.1016/j.nantod.2012.08.004
- Morachevskii A.G., Demidov A.I. // Rus. J. Appl. Chem. 2015. V. 88. No 4. P. 547. https://doi.org/10.1134/S1070427215040011
- Wang P., Kozlov A., Thomas D. et al. // Intermetallics. 2013. V. 42. P. 137. https://doi.org/10.1016/j.intermet.2013.06.003
- Kim H., Chou C.-Y., Ekerdt J.G., Hwang G.S. // J. Phys. Chem. C. 2011. V. 115. P. 2514. https://doi.org/10.1021/jp1083899
- Chiang H.-H., Lu J.-M., Kuo C.-L. // J. Chem. Phys. 2016. V. 144. 034502. P. 1. https://doi.org/10.1063/1.4939716
- Chiang H.-H., Lu J.-M., Kuo C.-L. // Ibid. 2017. V. 146. No 6. 064502. P. 1. https://doi.org/10.1063/1.4975764
- Dębski A., Zakulski W., Major Ł. et al. // Thermochim. Acta. 2013. V. 551. P. 53. https://doi.org/10.1016/j.tca.2012.10.015
- Thomas D., Abdel-Hafiez M., Gruber T. // J. Chem. Thermodynamics. 2013. V. 64. P. 205. https://doi.org/10.1016/j.jct.2013.05.018
- Dębski A., Gąsior W., Góral A. // Intermetallics. 2012. V. 26. P. 157. https://doi.org/10.1016/j.intermet.2012.04.001
- Thomas D., Zeilinger M., Gruner D. et al. // J. Chem. Thermodynamics. 2015. V. 85. P. 178. https://doi.org/10.1016/j.jct.2015.01.004
- Taubert F., Schwalbe S., Seidel J. et al. // Int. J. Mater. Res. 2017. V. 108. 146.111550. P. 943. https://doi.org/10.3139/146.111550
- Thomas D., Bette N., Taubert F. et al. // J. Alloys Compd. 2017. V. 704. 0925–8388. P. 398. https://doi.org/10.1016/j.jallcom.2017.02.010
- Taubert F., Thomas D., Hüttl R. et al. // Ibid. 2022. V. 897. 163147. P. 898. https://doi.org/10.1016/j.jallcom.2021.163147
- Asadov M.M., Mustafaeva S.N., Guseinova S.S., Lukichev V.F. // Rus. Microelectronics. 2022. V. 51. No. 2. P. 83. https://doi.org/10.1134/S1063739722010024
- Asadov M.M., Mustafaeva S.N., Guseinova S.S., Lukichev V.F. // Phys. Solid State. 2022. V. 64. No. 5. P. 528. https://doi.org/10.21883/0000000000
- Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. No 18. P. 3865. https://doi.org/10.1103/physrevlett.77.3865
- Asadov S.M., Mustafaeva S.N., Huseinova S.S., Lukichev V.F. // Russ. J. Phys. Chem A, 2024. V. 98. No 1. P. 1. https://doi.org/10.1134/S0036024424010023
- Asadov M.M., Mammadova S.O., Guseinova S.S. et al. // Rus. Microelectronics. 2022. V. 51. No 6. P. 413. https://doi.org/10.1134/S1063739722700159
- Madelung O. Semiconductors: Data Handbook. 3rd edition. Springer-Verlag Berlin Heidelberg New Yor. 2004. 690 p. ISBN978-3-642-62332-5.
- He J., Song X., Xu W. et al. // Mater. Lett. 2013. V. 94. P. 176. http://dx.doi.org/10.1016/j.matlet.2012.12.045
- Davydov S. Yu., Posrednik O.V. // Semicond. 2020. V. 54. Is. 11. P. 1197.
- Zhang Y.J., Yin Z.-P., Su Y., Wang D.-J. // Chin. Phys. B. 2018. V. 27. No 4. 047103.
- Zhao G.L., Bagayoko D. // New J. Phys. 2000. V. 2. P. 1. http://www.njp.org/
- CRC Handbook of Chemistry and Physics. D.R. Lide. Ed. CRC Press, Boca Raton, FL. 2005. http://www.hbcpnetbase.com
- Braga M.H., Dębski A., Gąsior W. // J. Alloys Compd. 2014. V. 616. P. 581. http://dx.doi.org/10.1016/j.jallcom.2014.06.212
- Morris A.J., Grey C.P., Pickard C.J. // arXiv: 1402.6233v1 [cond-mat.mtr-sci] 25 Feb 2014. P. 1.
- Asadov M.M., Kuli-zade E.S. // J. Alloys Compd. 2020. V. 842. 155632. https://doi.org/10.1016/j.jallcom.2020.155632
Supplementary files
