Самодиффузия и молекулярная ассоциация в бинарной системе циклогексан – метанол при температурах 298 и 323 К

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Представлены результаты исследования самодиффузии в бинарной системе циклогексан – метанол методом спинового эха 1H ЯМР с импульсным градиентом магнитного поля при температурах 298 К (в области ограниченной смешиваемости) и 323 К (во всем составе смешанного растворителя). Согласно полученным данным, концентрационные зависимости коэффициентов самодиффузии циклогексана увеличиваются с ростом концентрации метанола. Однако концентрационные зависимости коэффициентов самодиффузии метанола имеют минимумы. Вместе с тем, согласно данным спектроскопии 1H ЯМР, наблюдается уменьшение величины химического сдвига протонов OH-группы в молекуле метанола с ростом концентрации циклогексана и температуры, что указывает на уменьшение степени самоассоциации метанола в системе. В рамках уравнения Стокса – Эйнштейна проведена оценка степени влияния молекулярной ассоциации на самодиффузию метанола в бинарной системе. Показано, что концентрационные зависимости относительного эффективного гидродинамического радиуса метанола имеют максимумы.

全文:

受限制的访问

作者简介

В. Голубев

Институт химии растворов им. Г.А. Крестова РАН

编辑信件的主要联系方式.
Email: vag@isc-ras.ru
俄罗斯联邦, Иваново

参考

  1. Price W.S. NMR Studies of Translational Motion: Principles and Applications. Cambridge University Press: Cambridge, 2009. 393 p.
  2. Weingärtner H., Holz M. // Annu. Rep. Prog. Chem., Sect. C. 2002. V. 98. P. 121.
  3. Poling B.E., Prausnitz J.M., O’Connell J.P. The properties of gases and liquids. Fifth edition. McGRAW-HILL, 2001.
  4. Waldeck A.R., Kuchel P.W., Lennon A.J., Chapman B.E. // Prog. NMR Spectrosc. 1997. V. 30. P. 39.
  5. Blokhina S.V., Volkova T.V., Golubev V.A. et al. // Mol. Pharm. 2017. V. 14. P. 3381.
  6. Wolff L., Jamali S.H., Becker T.M. et al. // Ind. Eng. Chem. Res. 2018. V. 57. P. 14784.
  7. Prigogine I. The Molecular Theory of Solutions. North-Holland Publishing Company, Amsterdam, 1957.
  8. Golubev V.A., Gurina D.L., Kumeev R.S. // Russ. J. Phys. Chem. A. 2018. V. 92. P. 75.
  9. Gurina D.L., Golubev V.A. // Res. Chem. 2022. V. 4. 100673.
  10. Golubev V.A., Kumeev R.S., Gurina D.L. et al. // J. Mol. Liq. 2017. V. 241. P. 922.
  11. Golubev V.A. // J. Mol. Liq. 2018. V. 264. P. 314.
  12. Golubev V.A., Gurina D.L. // J. Mol. Liq. 2019. V. 283. P. 1.
  13. Golubev V.A., Gurina D.L. // Rus. J. Phys. Chem. A. 2019. V. 93. P. 447.
  14. Голубев В.А., Гурина Д.Л. // Журн. физ. химии. 2023. Т. 97. С. 247.
  15. Miyano Y., Hayduk W. // J. Chem. Eng. Data. 1993. V. 38. P. 277.
  16. Waldner P., Gamsjager H. // J. Solution Chem. 2000. V. 29. P. 505.
  17. Matsuda H., Ochi K., Kojima K. // J. Chem. Eng. Data. 2003. V. 48. P. 184.
  18. Ballaro’ S., Maisano G., Migliardo P., Wanderlingh F. // Phys. Rev. A. 1972. V. 6. P. 1633.
  19. Behrends R., Kaatze U., Schach M. // J. Chem. Phys. 2003. V. 119. P. 7957.
  20. Berg R.F., Moldover M.R. // J. Chem. Phys. 1988. V. 89. P. 3694.
  21. Brunet J., Gubbins K.E. // Trans. Faraday Soc. 1969. V. 65. P. 1255.
  22. Campbell A.N., Anand S.C. // Canadian J. Chem. 1972. V. 50. P. 1109.
  23. El Hammami N., Bouanz M., Toumi A. // Fluid Phase Equilibria. 2014. V. 384. P. 25.
  24. Berg R.F., Moldover M.R. // Intern. J. of Thermophysics. 1986. V. 7. P. 675.
  25. Kratochwill A. // Zeitschrift für Physikalische Chemie. 1980. V. 120. P. 165.
  26. Story M.J., Turner J.C.R. // Trans. Faraday Soc. 1969. V. 65. P. 1523.
  27. Janzen T., Zhang S., Mialdun A. et al. // Phys. Chem. Chem. Phys. 2017. V. 19. P. 31856.
  28. Guevara-Carrion G., Janzen T., Muñoz-Muñoz Y.M. et al. // J. Chem. Phys. 2016. V. 144. P. 124501.
  29. Lapeira E., Gebhardt M., Triller T. et al. // J. Chem. Phys. 2017. V. 146. 094507.
  30. Janzen T., Vrabec J. // Ind. Eng. Chem. Res. 2018. V. 57. P. 16508.
  31. Eslamian M., Saghir M.Z. // J. Non-Equilibrium Thermodynamics. 2012. V. 37. P. 329.
  32. El Hammami N., Bouanz M., Toumi A. // Indian J. Pure and Applied Phys. 2018. V. 56. P. 461.
  33. Tominaga T., Tenma S., Watanabe H. // J. Chem. Soc., Faraday Trans. 1996. V. 92. P. 1863.
  34. Cebe M., Kaltenmeier D., Hertz H.G. // J. Chim. Phys. 1984. V. 81. P. 7.
  35. Holz M., Weingartner H. // J. Magnetic Res. 1991. V. 92. P. 115.
  36. Bellaire D., Kiepfer H., Münnemann K., Hasse H. // J. Chem. Eng. Data. 2020. V. 65. P. 793.
  37. Kamei Y., Oishi Y. // Bull. Chem. Soc. Japan. 1972. V. 45. P. 2437.
  38. Sarolea-Mathot L. // Trans. Faraday Soc. 1953. V. 49. P. 8.
  39. Durov V.A., Shilov I.Yu. // J. Mol. Liq. 2001. V. 92. P. 165.
  40. Durov V.A., Tereshin O.G., Shilov I.Yu. // J. Mol. Liq. 2004. V. 110. P. 69.
  41. Macchioni A., Ciancaleoni G., Zuccaccia C., Zuccaccia D. // Chem. Soc. Rev. 2008. V. 37. P. 479.
  42. Czeslik C., Jonas J. // Chem. Phys. Letters. 1999. V. 302. P. 633.
  43. Cabrita E.J., Berger S. // Magn. Reson. Chem. 2001. V. 39. P. 142.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Concentration dependences of self-diffusion coefficients of components in the methanol– cyclohexane binary system at temperatures of 298, 323 and 333 K (mole fraction of cyclohexane).

下载 (119KB)
3. Fig. 2. Concentration dependences of self-diffusion coefficients of components in binary systems methanol – cyclohexane at temperatures of 298 and 323 K and methanol – carbon tetrachloride at temperatures of 298 K; – molar fraction of cyclohexane or carbon tetrachloride.

下载 (103KB)
4. Fig. 3. Concentration dependences of chemical shifts of protons of the OH group of methanol and protons in the cyclohexane molecule relative to the CH3 group of methanol at temperatures of 298 and 323 K; – the mole fraction of cyclohexane.

下载 (83KB)
5. Fig. 4. Concentration dependences of the relative effective hydrodynamic radius of methanol in the methanol -cyclohexane binary system at temperatures of 298, 323 and 333 K; – mole fraction of cyclohexane.

下载 (76KB)

版权所有 © Russian Academy of Sciences, 2024