INJECTIVITY OF A GAS WELL UNDER DIFFERENT MODES OF RESERVOIR FLUID DISPLACEMENT
- Authors: Sypchenko I.M.1, Afanasyev A.A.1
-
Affiliations:
- Research Institute of Mechanics, Lomonosov Moscow State University
- Issue: Vol 65, No 5 (2025)
- Pages: 815-826
- Section: Mathematical physics
- URL: https://rjdentistry.com/0044-4669/article/view/686936
- DOI: https://doi.org/10.31857/S0044466925050172
- EDN: https://elibrary.ru/IHQYMG
- ID: 686936
Cite item
Abstract
Unsteady gas flow from a vertical well into a water-saturated reservoir is investigated within the axisymmetric formulation of the filtration problem. The influence of the shape of the gas-saturated zone on the injectivity coefficient of the well, i.e., on the maximum rate of gas injection, is estimated. It isshown that the well skin factor can be decomposed into two multipliers, the first of which — the shape parameter — characterizes the shape of the gas plume, and the second describes the growth of the skin factor with time. With the help of numerical modeling of filtration, diagrams describing the dependence of the noted multipliers on the similarity parameters have been constructed. It is shown that gas injection at any values of parameters and shapes of gas-saturated regions is accompanied by injectivity growth with time, and the maximum values of injectivity coefficients are reached at high rates of gas injection. For this limiting case, the relationship for the skin factor is explicitly obtained. The results of the study can be useful for determining effective ways of application of Carbon Capture, Utilization and Storage technology.
About the authors
I. M. Sypchenko
Research Institute of Mechanics, Lomonosov Moscow State University
Email: sypchenkoim@imec.msu.ru
Moscow
A. A. Afanasyev
Research Institute of Mechanics, Lomonosov Moscow State University
Email: afanasyev@imec.msu.ru
Moscow
References
- Сургучев М.Л. Вторичные и третичные методы увеличения нефтеотдачи. М.: Недра, 1985. 308 с.
- Dake L.P. Fundamentals of Reservoir Engineering. Amsterdam: Elsevier Scientific Publishing Co, 1978. 462 p.
- Zarrouk S.J., McLean K. Geothermal Well Test Analysis: Fundamentals, Applications and Advanced Techniques. Amsterdam: Elsevier Science, 2019. 352 p.
- Valluri M.K., Mishra S., Ganesh P.R. Injectivity index: a powerful tool for characterizing CO2 storage reservoirs – a technical note // Greenhouse Gases: Science and Technology. 2020. V. 11.
- Holloway S., Savage D. The potential for aquifer disposal of carbon dioxide in the UK // Energy Conversion and Management. 1993. V. 34. P. 925–932.
- Bickle M.J. Geological carbon storage // Nature Geoscience. 2009. V. 2. P. 815–818.
- Afanasyev A., Penigin A., Dymochkina M., Vedeneeva E., Grechko S., Tsvetkova Yu., Mikheev I., Pavlov V., Boronin S., Belovus P., Osiptsov A. Reservoir simulation of the CO2 storage potential for the depositional environments of West Siberia // J. of Gas Science and Engng. 2023. V. 114. 204980.
- Afanasyev A., Grechko S. Analytical expression for the skin factor of the salt deposition zone around a CO2 injection well: Extension to the case of ternary miscible displacement // Geoenergy Science and Engng. 2023. V. 228. 212036.
- Huppert H.E., Neufeld J.A. The fluid mechanics of carbon dioxide sequestration // Annual Review of Fluid Mechanics. 2014. V. 46. P. 255–272.
- Sypchenko I., Afanasyev A. CO2 storage efficiency in saline aquifers: Insight from the numerical modeling of immiscible displacement // Physics of Fluids. 2024. V. 36. No. 12. 126624.
- Желтов Ю.П. Разработка нефтяных месторождений. М.: Недра, 1986. 332 с.
- Баренблат Г.И., Ентов В.М., Рыжик В.М. Движение жидкостей и газов в природных пластах. М.: Недра, 1984. 211 с.
- Buckley S.E., Leverett M.C. Mechanism of Fluid Displacement in Sands. // Transactions of the AIME. 1942. V. 146. P. 107–116.
- Chernova A., Afanasyev A. Recovery and Sweep Efficiency in a Cross-Sectional Problem of Immiscible Displacement with Gravity Override and Capillary Imbibition // Transport in Porous Media. 2024. V. 151. P. 2431–2453.
- Andreeva A.I., Afanasyev A.A. Regimes of Displacement from an Anisotropic Formation during Injection of Fluid through a Vertical Well // Fluid Dynamics. 2024. V. 59. P. 504–520.
- Blunt M. Multiphase Flow in Permeable Media: A Pore-Scale Perspective. Cambridge: Cambridge University Press, 2017. 482 p.
- Brooks R., Corey A. Hydraulic properties of porous media // Hydrology Papers: Colorado State University. 1964. No. 3.
- Чернова А.А., Афанасьев А.А. Режимы вытеснения жидкости из анизотропного пласта в поле силы тяжести // Изв. РАН МЖГ. 2023. №6. C. 95–109.
- Yortsos Y.C. A theoretical analysis of vertical flow equilibrium // Transport in Porous Media. 1995. V. 18. P. 107–129.
- Riaz A., Tchelepi H.A. Linear stability analysis of immiscible two-phase flow in porous media with capillary dispersion and density variation // Phys. Fluids. 2004. V. 16. No. 12. P. 4727–4737.
- Афанасьев А.А., Султанова Т.В. Исследование гидродинамической неустойчивости фронта вытеснения при закачке углекислого газа в водонасыщенный пласт // Изв. РАН МЖГ. 2016. №4. С. 85–96.
- Afanasyev A.A. Application of the reservoir simulator MUFITS for 3D modeling of CO2 storage in geological formations // Energy Procedia. 2013. V. 40. P. 365–374.
Supplementary files
