CONTACT BOUNDARY INSTABILITY GAS-LIQUID IN POROUS MEDIUM DURING FILTRATION WITHIN THE FRAMEWORK OF FORCHHEIMER’S LAW
- Authors: Shargatov V.A.1, Kozhurina P.I.1, Gorkunov S.V.1
-
Affiliations:
- Mathematical Institute named after V.A. Steklov RAS, Russia (V.A. Steklov Mathematical Institute, Russian Academy of Sciences)
- Issue: Vol 65, No 5 (2025)
- Pages: 827-838
- Section: Mathematical physics
- URL: https://rjdentistry.com/0044-4669/article/view/686937
- DOI: https://doi.org/10.31857/S0044466925050188
- EDN: https://elibrary.ru/IHSPGD
- ID: 686937
Cite item
Abstract
The spectral (linear) stability of the solution obtained when considering the problem of displacement of a liquid layer by a gas in a porous medium is studied using the generalized nonlinear Forchheimer filtration law by the method of normal modes . Dispersion relations describing the growth of perturbations of the liquid-gas surface were obtained. These relations determine the evolution of perturbations at the linear stage of their development depending on the wavelength of the perturbation, parameters of boundary conditions and assumptions about the law of gas motion. It is shown that the use of the generalized nonlinear Forchheimer filtration law instead of Darcy’s law does not eliminate the anomalous nature of the dependence of the perturbation growth rate on the perturbation wavelength. The growth rate of the perturbation amplitude at the linear stage grows unboundedly with decreasingwavelength.
Keywords
About the authors
V. A. Shargatov
Mathematical Institute named after V.A. Steklov RAS, Russia (V.A. Steklov Mathematical Institute, Russian Academy of Sciences)
Email: shargatov@mail.ru
Moscow, Russia
P. I. Kozhurina
Mathematical Institute named after V.A. Steklov RAS, Russia (V.A. Steklov Mathematical Institute, Russian Academy of Sciences)
Email: polinakozhurina2020@gmail.com
Moscow, Russia
S. V. Gorkunov
Mathematical Institute named after V.A. Steklov RAS, Russia (V.A. Steklov Mathematical Institute, Russian Academy of Sciences)
Email: gorkunov.ser@mail.ru
Moscow, Russia
References
- Лапук Б.Б. Теоретические основы разработки месторождений природных газов. Ижевск: Институт компьютерных исследований, 2002.
- Tsypkin G., Il’ichev A. Gravitational stability of the interface in water over steam geothermal reservoirs // Transp. Porous Media. V. 55.№2 (2004). P. 183–199.
- Tsypkin G., Il’ichev A. Catastrophic transition to instability of evaporation front in a porous medium // Eur. J. Mech. B Fluids. V. 27.№6 (2008). P. 665–677.
- Shargatov V., Tsypkin G., Kozhurina P. Linear Stability of Filtration Flow of a Gas and Two Immiscible Liquids with Interfaces // Mathematics. V. 11.№21 (2023). P. 4476.
- Nemati A. Numerical analysis of viscous fingering instability due to miscible displacement // Prikl. Mekh. Tekhn. Fiz. 2020.№4.
- Shargatov V., Gorkunov S., Il’ichev A. Dynamics of front-like water evaporation phase transition interfaces // Communications in Nonlinear Science and Numerical Simulation. V. 67 (2019). P. 223–236.
- Shargatov V., Tsypkin G.G., Gorkunov S.V., Kozhurina P.I., Bogdanova Y.A. On the Short Wave Instability of the Liquid/Gas Contact Surface in Porous Media // Mathematics. V. 10.№17 (2022). P. 3177.
- Shargatov V.A. Dynamics and Stability of Air Bubbles in a Porous Medium // Computational Mathematics and Mathematical Physics. V. 58.№7 (2018). P. 1172–1187.
- Шевченко О.Н. Определение критических значений скоростей фильтрации в условиях нарушения закона Дарси // Успехи современной науки и образования. Т. 3.№2 (2016). С. 52–56.
- Brinkman H. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles // Flow Turbulence and Combustion. V. 1 (1949). P. 27–34.
- Цыпкин Г., Шаргатов В. Линейная устойчивость фильтрационного течения с поверхностью раздела газ–нефть в рамках подхода Бринкмана // Изв. РАН. МЖГ. 2022.№3 (2022). С. 56–64.
- Форхгеймер Ф. Гидравлика. М.-Л.: ОНТИ, 1935.
- Фенчер Д., Льюис Д., Берне К. Физические испытания пород нефтяных и газовых пластов и их свойства. .Инотехника.. 1935.№105.
- Минский Е.М. О турбулентной фильтрации в пористых средах. Тр. Всес. НИИ природных газов .Вопросы добычи, транспорта и переработки природных газов.. М.-Л.: Гостоптехиздат, 1951. С. 64–71.
- Минский Е.М. Статистическое обоснование уравнений фильтрационного движения // Докл. АН СССР. 1958. Т. 118.№2. С. 252–258.
- Schneebeli G. Experiences Sur la Limite de Validite de la Loi de Darcy et L’apparition de la Turbulence Dans un Ecoulement de Filtration. La Houille Blanche. 1955. V. 41.№2. P. 141–149.
- Lyubimova T.P., Lyubimov D.V., Baydina D.T., Kolchanova E.A., Tsiberkin K.B. Instability of plane-parallel flow of incompressible liquid over a saturated porous medium // Phys. Rev. E. 2016. V. 94.№1.
- Majdabadi Farahani S., Chiapponi L., Longo S., Di Federico V. Darcy–Forchheimer gravity currents in porous media // J. Fluid Mech. 2024. V. 1000.№A89.
- Lenci A., Zeighami F., Di Federico V. Effective Forchheimer coefficient for layered porous media // Transp. Porous Media. 2022. V. 144.№2 (2022). P. 459–480.
Supplementary files
