Biomechanic potentials of the canine and carnassial teeth in the lines of American mink (Neogale vison Schreber 1777) following their selection for defensive behavior traits as compared to a natural population and related species

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Differences between the lines of aggressive and tame American minks that arose as a result of selection for traits of defensive behavior (16–17 generations) were revealed based on the biomechanic indices of the mandible characterizing the mechanic potentials of the canine and carnassial teeth. The results are consistent with D. K. Belyaev’s theory of destabilizing selection: along with an increase in the variability of functions and the destabilization of the historically established system of their sexual differences (sexual dimorphism), new biomechanic features of the mandible were formed in the line of tame minks. In contrast, the control line of non-selected minks unaffected by selection retained significant sex differences in biomechanic indices. Between the American minks from a Canadian natural population and the lines of aggressive and tame individuals, the differences in biomechanic indicators were less pronounced than between the lines themselves. Differences between the American mink, the European mink (Mustela lutreola L. 1758) and the Siberian weasel (M. sibirica Pallas 1773) in the biomechanic potentials of the canine and predatory teeth of the mandible which reflect specializations in the genus Neogale and the specifics of the hunting behavior of the species were found. In the invasive American mink, the mechanic potential (MP) of the canine tooth prevails, vs the MP of the carnassial tooth both in the European mink and the Siberian weasel, this trait being capable of ensuring the divergence of their trophic niches and contribute to the preservation of native species in areas of their sympatry with N. vison.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Vasilyev

Institute of Plant and Animal Ecology of the Ural Branch of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: vag@ipae.uran.ru
Ресей, Yekaterinburg

I. Vasilyeva

Institute of Plant and Animal Ecology of the Ural Branch of the Russian Academy of Sciences

Email: vag@ipae.uran.ru
Ресей, Yekaterinburg

M. Chibiryak

Institute of Plant and Animal Ecology of the Ural Branch of the Russian Academy of Sciences

Email: vag@ipae.uran.ru
Ресей, Yekaterinburg

N. Lokhneva

Institute of Plant and Animal Ecology of the Ural Branch of the Russian Academy of Sciences

Email: trapezov@bionet.nsc.ru
Ресей, Yekaterinburg

O. Trapezov

Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: trapezov@bionet.nsc.ru
Ресей, Novosibirsk; Novosibirsk

Әдебиет тізімі

  1. Беляев Д. К., 1979. Дестабилизирующий отбор как фактор изменчивости при доместикации животных // Природа. № 2. С. 36–45.
  2. Беляев Д. К., Трут Л. Н., 1989. Конвергентный характер формообразования и концепция дестабилизирующего отбора // Вавиловское наследие в современной биологии. М.: Наука. С. 155–169.
  3. Васильев А. Г., Большаков В. Н., Васильева И. А., Синева Н. В., 2016. Последствия интродукции ондатры в Западной Сибири: морфофункциональный аспект // Российский журнал биологических инвазий. № 4. С. 2–13.
  4. Кораблёв Н. П., Кораблёв П. Н., Кораблёв М. П., 2018. Микроэволюционные процессы в популяциях транслоцированных видов: евроазиатский бобр, енотовидная собака, американская норка. М.: Товарищество научных изданий КМК. 452 с.
  5. Павлинов И. Я., Микешина Н. Г., 2002. Принципы и методы геометрической морфометрии // Журнал общей биологии. Т. 63. № 6. С. 473–493.
  6. Трапезов О. В., 1987. Селекционное преобразование оборонительной реакции на человека у американской норки // Генетика. Т. 23. № 6. С. 1120–1127.
  7. Трапезов О. В., 2012. Новые окрасочные мутации у американской норки (Mustela vison), наблюдаемые в процессе ее экспериментальной доместикации. Автореф. дис. … док. биол. наук. Новосибирск: ИЦиГ СО РАН. 34 с.
  8. Трут Л. Н., 1981. Генетика и феногенетика доместикационного поведения // Вопросы общей генетики / Под ред. Ю. П. Алтухова. М.: Наука. С. 323–332.
  9. Трут Л. Н., Харламова А. В., Пилипенко А. С., Гербек Ю. Э., 2021. Эксперимент по доместикации лисиц и эволюция собак с позиции современных молекулярно-генетических и археологических данных // Генетика. Т. 57. № 7. С. 767–785.
  10. doi: 10.31857/S0016675821070146
  11. Харламова А. В., Фалеев В. И., Трапезов О. В., 2000. Влияние селекции по поведению на краниологические признаки американской норки (Mustela vison) // Генетика. Т. 36. № 6. С. 823–828.
  12. Abramov A. V., Tumanov I. L., 2003. Sexual dimorphism in the skull of the European mink Mustela lutreola from NW part of Russia // Acta Theriologica. V. 48. P. 239–246.
  13. Anderson M. J., 2001. A new method for non-parametric multivariate analysis of variance // Austral Ecology. V. 26. P. 32–46.
  14. Anderson P. S.L., Renaud S., Rayfield E. J., 2014.Adaptive plasticity in the mouse mandible // BMC Evolutionary Biology. V. 14. № 85. P. 1–9. http://www.biomedcentral.com/1471-23148/14/85
  15. doi: 10.1186/1471-2148-14-85
  16. Belyaev D. K., 1979. Destabilizing selection as a factor in domestication // J. Hered. V. 70. № 5. P. 301–308.
  17. Blanco R. E., Rinderknecht A., Lecuona G., 2011. The bite force of the largest fossil rodent (Hystricognathi, Caviomorpha, Dinomyidae) // Lethaia. P. 1–7. doi: 10.1111/j.1502-3931.2011.00265.x
  18. Bošković A., Rando O. J., 2018. Transgenerational epigenetic inheritance // Ann. Rev. Genet. V. 52. P. 21–41.
  19. Burggren W., 2016. Epigenetic inheritance and its role in evolutionary biology: re-evaluation and new perspectives // Biology. V. 5. № 24. P. 2–22.
  20. Christiansen P., 2008. Feeding Ecology and Morphology of the Upper Canines in Bears (Carnivora: Ursidae) // J. of Morphology. V. 269. P. 896–908.
  21. Cornette R., Tresset A., Houssin C. et al., 2015. Does bite force provide a competitive advantage in shrews? The case of the greater white-toothed shrew // Biological Journal of the Linnean Society. V. 114. № 4. P. 795– 807.
  22. Croose E., Hanniffy R., Harrington A., Põdra M. et al., 2023. Mink on the brink: comparing survey methods for detecting a critically endangered carnivore, the European mink Mustela lutreola // European Journal of Wildlife Research. V. 69. № 34. P. 1–14. https://doi.org/10.1007/s10344-023-01657-3
  23. Darwin C., 1868.Variation of plants and animals under domestication. London: J. Murray. 486 p.
  24. Davis J. S., 2014. Functional Morphology of Mastication in Musteloid Carnivorans // Dissertation of Biological Sciences Ph. D. Athens: Ohio University. 234 p.
  25. Donelan S. C., Hellmann J. K., Bell A. M. et al., 2020. Transgenerational plasticity in human-altered environments // Trends in Ecology and Evolution. V. 35. № 2. P. 115–124.
  26. Drake A. G., Klingenberg C. P., 2010. Large-scale diversification of skull shape in domestic dogs: disparity and modularity // Amer. Nat. V. 175. № 3. P. 289–301.
  27. Fitzhugh D. C., Parmer A., Shelton L. J., Sheets J. T., 2008. A comparative analysis of carbon dioxide displacement rates for euthanasia of the ferret // Lab. Anim. (NY). V. 37. P. 81–86.
  28. Gálvez-López E., Cox P. G., 2022. Mandible shape variation and feeding biomechanics in minks // Scientific Reports. V. 12. № 4997. P. 1–11. https://doi.org/10.1038/s41598-022-08754-4
  29. Gálvez-López E., Kilbourne B., Cox P. G., 2021. Cranial shape variation in mink: Separating two highly similar species // J. of Anatomy. V. 00. P. 1–16. https://doi.org/10.1111/joa.13554
  30. Gittleman J. L., Van Valkenburgh B., 1997. Sexual dimorphism in the canines and skulls of carnivores: effects of size, phylogeny, and behavioral ecology // Journal of Zoology. V. 242. P. 97–117.
  31. Greaves W. S., 1983. A functional analysis of carnassial biting // Biol. J. Linn. Soc. V. 20. P. 353–363.
  32. Hammer Q., Harper D. A.T., Ryan P. D., 2001. PAST: Paleontological Statistics software package for education and data analysis // Palaeontol. Electronica. V. 4. № 1. P. 1–9. (program). http://palaeoelectronica.org/2001_1/past/issue1_01.html].
  33. Jablonka E., Raz G., 2009. Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution // Qvart. Rev. Biol. V. 84. P. 131–176.
  34. Jensen P., 2013. Transgenerational epigenetic effects on animal behaviour // Prog. Biophys. Mol. Biol. V. 113. P. 447–454.
  35. Kaiser S., Hennessy M. B., Sachser N., 2015. Domestication affects the structure, development and stability of biobehavioural profiles // Front. in Zool. V. 12. Suppl. 1. P. 1–11. S19. http://www.frontiersinzoology.com/content/12/S1/S19
  36. Klingenberg C. P., 2011. MorphoJ: an integrated software package for geometric morphometrics // Mol. Ecol. Resour. V. 11. P. 353–357. https://doi.org/10.1111/j.1755-0998.2010.02924.x
  37. Kukekova A. V., Johnson J. L., Xiang X. et al., 2018. Red fox genome assembly identifies genomic regions associated with tame and aggressive behaviours // Nat. Ecol. Evol. V. 2. P. 1479–1491. https://doi.org/10.1038/s41559-018-0611-6
  38. Law C. J., 2019. Solitary meat-eaters: solitary, carnivorous carnivorans exhibit the highest degree of sexual size dimorphism // Scientific Reports. V. 9. P. 1–10.
  39. Law C. J., 2020. Sex-specific ontogenetic patterns of cranial morphology, theoretical bite force, and underlying jaw musculature in fishers and American martens // Journal of Anatomy. V. 00. P. 1–14. https://doi.org/10.1111/joa.13231
  40. Law C. J., Baliga V. B., Tinker M. T., Mehta R. S., 2017. Asynchrony in craniomandibular development and growth in Enhydra lutris nereis (Carnivora: Mustelidae): are southern sea otters born to bite? // Biological Journal of the Linnean Society. V. 121. P. 420–438.
  41. Law C. J., Duran E., Hung N. et al., 2018. Effects of diet on cranial morphology and biting ability in musteloid mammals // Journal of Evolutionary Biology. 31. 1918–1931.
  42. Lord K. A., Larson G., Coppinger R. P., Karlsson E. K., 2020. The history of farm foxes undermines the animal domestication syndrome // Trends in Ecology and Evolution. V. 35. № 2. P. 125–135. https://doi.org/10.1016/j.tree.2019.10.011
  43. Loy A., Spinosi O., Cardini R., 2004. Cranial morphology of Martes foina and M. martes (Mammalia, Carnivora, Mustelidae): the role of size and shape in sexual dimorphism and interspecific differentiation // The Italian Journal of Zoology. V. 71. P. 27–35.
  44. Maran T., Põdra M., Harrington L. A., Macdonald D. W., 2017. European mink: restoration attempts for a species on the brink of extinction // Biology and Conservation of Musteloids / Ed. by D. W. Macdonald, C. Newman, and L. A. Harrington. Oxford: Oxford Univ. Press. 2017. https://doi. org/10.1093/oso/9780198759805.001.0017
  45. Põdra M., Gómez A., Palazón S., 2013. Do American mink kill European mink? Cautionary message for future recovery efforts // Eur. J. Wildl. Res. V. 59. P. 431–440.
  46. Rohlf F. J., 2017. TpsUtil, file utility program, version 1.74. Department of Ecology and Evolution, State University of New York at Stony Brook. (program).
  47. Rohlf F. J., 2017a. TpsDig2, digitize landmarks and outlines, version 2.30. Department of Ecology and Evolution, State University of New York at Stony Brook. (program).
  48. Rohlf F. J., Slice D., 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks // Syst. Biol. V. 39. № 1. P. 40–59.
  49. Romaniuk A., 2018. Shape variation of Palearctic mustelids (Carnivora: Mustelidae) mandible is affected both by evolutionary history and ecological preference // Hystrix. V. 29. P. 87–94.
  50. Sidorovich V. E., Polozov A. G., Zalewski A., 2010. Food niche variation of European and American mink during the American mink invasion in north-eastern Belarus // Biological Invasions. V. 12. P. 2207–2217.
  51. Singh N., Albert F. W., Plyusnina I. et al., 2017. Facial shape differences between rats selected for tame and aggressive behaviors // PLoS ONE. V. 12. № 4. P. 1–11. e0175043. https://doi.org/10.1371/journal.pone.0175043
  52. Thom M. D., Harrington L. A., Macdonald D. W., 2004. Why are American mink sexually dimorphic? A role for niche separation // Oikos. V. 105. P. 525–535.
  53. Timm-Davis L.L., DeWitt T.J., Marshall C. D., 2015. Divergent skull morphology supports two trophic specializations in otters (Lutrinae) // PLoS One. V. 10. P. e0143236-e0143218
  54. Trapezov O. V., 1997. Black crystal: A novel color mutant in the American mink (Mustela vision Schreber) // J. Heredity. V. 88. P. 164–166.
  55. Van Valkenburgh B., Ruff C. B., 1987. Canine tooth strength and killing behaviour in large carnivores // J. Zool. Lond. V. 212. P. 379–397.
  56. Wilkins A. S., Wrangham R. W., Fitch W. T., 2014. The “domestication syndrome” in mammals: A unified explanation based on neural crest cell behavior and genetics // Genetics. V. 197. № 3. P. 795–808. https://doi.org/10.1534/genetics.114.165423
  57. Zazhigin V. S., Voyta L. L., 2019. Northern Asian Pliocene–Pleistocene beremendiin shrews (Mammalia, Lipotyphla, Soricidae): a description of material from Russia (Siberia), Kazakhstan, and Mongolia and the paleobiology of Beremendia // Journal of Paleontology. V. 93. P. 1234–1257. https://doi.org/10.1017/jpa.2019.51
  58. Zelditch M. L., Swiderski D. L., Sheets H. D., Fink W. L., 2004. Geometric Morphometrics for Biologists: A Primer. New York: Elsevier Acad. Press. 437 p.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Schematic of the location on the buccal side of the mandible of the American mink: a - LM landmarks (1-7), SM semi-landmarks (n = 8) and scaling landmarks (8, 9); b - measurements A, B, C, D, E, F (from: Gálvez-López, Cox, 2022) and angles α, β, γ, δ for calculating indices of mechanical potentials of the canine and predatory tooth (for notations and explanations see: Gálvez-López et al. in the text) and c is a way to calculate the angle of force direction - FA (from: Cornett et al, 2015). Arrows - directions of biomechanical forces of the internal arms

Жүктеу (131KB)
3. Fig. 2. Comparison of mean mechanical potentials (taking into account standard error ± SE) of the canine (MPmadm) and predatory tooth (MPmatp) of males of the natural Canadian population (Can), experimental lines of American mink (aggressive: males - AM, females - AF; manual: males - TM, females - TF; non-selected: males - NM, females - NF), male European mink (Mlut) and columella (Msib). Shadow spot sizes correspond to centroid sizes (CS) minus their minimum value

Жүктеу (104KB)
4. Fig. 3. Results of cluster analysis (UPGMA) of the mean indices of the mechanical potential of the canine and mandibular predatory tooth of individuals of the Canadian population, lines of aggressive, manual and unselected American mink (Neogale vison) and two closely related species, the European mink (Mustela lutreola) and the column (M. sibirica)

Жүктеу (92KB)

© Russian Academy of Sciences, 2024