Hybridogeneous speciation of unisexual species and hybrid forms of lizards of the genus darevskia: a brief review of Darevsky’s papers and modern data

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Results of complex studies on unisexual and bisexual (parental) species, mainly of the genus Darevskia, have been generalized, including allozyme, mitochondrial (mt) DNA, nuclear microsatellite (ms) DNA analyses, combined with different molecular cytogenetic techniques, as well as in combination with environmental factors. Present complex research has confirmed the concept of hybridogeneous speciation of unisexual species of lizards elaborated in 1980 and based on three interrelated phenomena such as hybridization-unisexuality-polyploidy. At the same time, the selectivity (сonstraints) and rarety of successful hybridization are emphasized at present, these studies have confirmed ‘paternal’ and ‘maternal’ species of hybrid unisexual species, some phylogenetic constraints of successful hybridization, and the roles played by “specific genome properties” and sex chromosomes. The data obtained have extended our knowledge of the genetic diversity of hybrid unisexual species and the understanding of the evolutionary plasticity of hybrid genomes and meiosis modifications, emphasizing the roles played by suboptimal environmental factors during the origin of such species. Further experiments may provide promising information concerning regular trends in the hybridogeneous speciation of unisexual species from different groups of vertebrate animals.

Full Text

Restricted Access

About the authors

L. A. Kupriyanova

Zoological Institute, Russian Academy of Sciences

Author for correspondence.
Email: larissakup@zin.ru
Russian Federation, St. Petersburg, 199034

References

  1. Астауров Б.П., 1977. Партеногенез, андрогенез, полиплоидия. М.: Наука. 251 с.
  2. Астауров Б., Демин Ю., 1972. Партеногенез у птиц // Онтогенез. Т. 3. № 2. С. 123–143.
  3. Боркин Л., Даревский И., 1980. Сетчатое (гибридогенное) видообразование у позвоночных // Журнал общей биологии. Т. 41. № 4. С. 485–500.
  4. Васильев В.П., 1985. Эволюционная кариология рыб. М.: Наука. 300 с.
  5. Гирнык А., Вергун А., Рысков А., 2023. Идентификация гибридных особей скальных ящериц Darevskia armeniaca x Darevskia valentini на основе микросателлитного генотипирования // Генетика. Т. 59. № 6. С. 723–727.
  6. Даревский И., 1958. Естественный партеногенез у некоторых подвидов скальной ящерицы Lacerta saxicola Eversmann // ДАН СССР. Т. 122. № 4. С. 730–732.
  7. Даревский И., Аззел Т., Куприянова Л., Даниелян Ф., 1973. Гибридные триплоидные самцы в симпатрических популяциях партеногенетических обоеполых видов скальных ящериц рода Lacerta // Бюллетень Московского общества испытателей природы. Т. 78. № 1. С. 48–56.
  8. Даревский И., Даниелян Ф., 1979. Изучение степени генетической однородности однополого вида скальной ящерицы (Lacerta unisexualis Darevsky) методом приживления кожного трансплантата // Труды Зоологического института АН СССР. Т. 89. С. 65–70.
  9. Даревский И., Куликова В., 1964. Естественная триплоидия в полиморфной группе кавказских ящериц Lacerta saxicola Eversmann в результате гибридизации между двуполыми и партеногенетическими формами этого вида // ДАН СССР. Т. 136. № 1. C. 202–205.
  10. Кайданов Л.З., 1996. Генетика популяций. М.: Высшая школа. 320 с.
  11. Куприянова Л., 1969. Кариологический анализ ящериц подрода Archaeolacerta // Цитология. Т. 11. № 7. С. 801–814.
  12. Куприянова Л., 1997. Некоторые цитогенетические закономерности сетчатого видообразования однополых видов ящериц (Reptilia, Lacertilia) других групп позвоночных животных // Цитология. Т. 39. № 12. С. 1089–1108.
  13. Куприянова Л., 1999. Генетическое разнообразие гибридных однополых видов и форм рода Lacerta (Lacertidae, Reptilia): его возможные цитогенетические механизмы, цитогенетика мейоза природных полиплоидных форм // Цитология. Т. 41. № 12. С. 1038–1047.
  14. Куприянова Л., 2014. Концепция гибридогенного видообразования у позвоночных животных: комплексные исследования однополых видов рептилий // Труды Зоологического института РАН. Т. 318. № 4. С. 382–390. ISSN0206–0477.
  15. Куприянова Л., Даревский И., 2008. Концепция гибридогенного видообразования у позвоночных животных // в кн.: Тезисы докладов Международной конференции памяти В.С. Кирпичникова “Генетика, селекция, гибридизация, племенное дело и воспроизводство рыб”. Санкт-Петербург, 10–12 сентября 2008 г. Тезисы докладов. ГосНИОРХ, Санкт-Петербург. С. 37–38.
  16. Куприянова Л., Сафронова Л., Сычева В., Даниелян Ф., Петросян В., 2021. Оогенез (профаза 1 мейоза) и митотические хромосомы партеногенетического вида Darevskia armeniaca (семейство Lacertidae) // Известия РАН. Т. 26. № 3. С. 241–248. doi:0.1134/S1062359021030080
  17. Чефрас Н.Б., 1969. Основные итоги цитогенетического анализа однополой и двуполой форм серебряного карася // Генетика, селекция и гибридизация рыб. М.: Наука. С. 85–97.
  18. Arakelyan M., Spangenberg V., Petrosyan V., Ryskov A., Kolomiets O., Galoyan E., 2023. Evolution of parthenogenetic reproduction in Caucasian rock lizards: a review // Curr. Zool. V. 69. № 2. P. 128–135. https://doi.org/10.1093/cz/zoac036
  19. Badaeva T., Malysheva D., Korchagin V., Ryskov A., 2008. Genetic variation and de novo mutations in the parthenogenetic Caucasian rock lizard Darevskia unisexualis // PLoS ONE. V. 3.e2730.
  20. Beninde J., Feldmeier S., Veith M., Hochkirch A., 2018. Admixture of hybrid swarms of native and introduced lizards in cities is determined by the cityscape structure and invasion history // Proc. R. Soc. B., Biol. Sci. V. 285. е20180143.
  21. Bezy R., Sites J.W., 1987. A preliminary study of allozyme evolution in the lizard family Xantusiidae // Herpetologica. V. 43. P. 280–292.
  22. Carretero M., García-Muñoz E., Argaña E., Freitas S., Corti C., Arakelyan M., et al., 2018. Parthenogenetic Darevskia lizards mate frequently if they have the chance: a quantitative analysis of copulation marks in a sympatric zone // Journal of Natural History. V. 52. № 7–8. P. 405–413. https://doi.org/10.1080/00222933.2018.1435832
  23. Cuellar O., 1971. Reproduction and the mechanism of meiotic restitution in the parthenogenetic lizard Cnemidophorus uniparens // J. Morph. V. 133. № 2. P. 139–165. http://doi.org/10.1002/jmor.1051330203
  24. Danielyan F., Arakelyan M., Stepanyan I., 2008. Hybrids of Darevskia valentini, D. armeniaca and D. unisexualis from a sympatric population in Armenia // Amphinbia–Reptilia. V. 29. № 4. P. 487–504. https://doi.org/10.1163/156853808786230424
  25. Darevsky I., 1966. Natural parthenogenesis in a polymorphic group of Caucasian rock lizards related to Lacerta saxicola Eversmann // Journal of the Ohio Herpetological Society. V. 5. № 4. P. 115–152.
  26. Darevsky I., Kulikova V., 1961. Natürliche parthenogenese in der polymorphen gruppe der Kaukasischen Felseidechse Laceгta saxicola Eversmaпn // Zool. Jb. Abt. Syst. Bd. 89. P. 119–176.
  27. Darevskii I., Kupriyanova L., 1982. Rare males in parthenogenetic lizard Lacerta armeniaca Méhely // Vertebr. Hung. V. 21. P. 69–75.
  28. Darevsky I., Kupriyanova L., Uzzell T., 1985. Parthenogenesis in Reptiles // in: Biology of the Reptilia. Gans C., Billett F. (eds). New York: Wiley and Sons. V. 15. P. 412–526.
  29. Darevsky I., Kupriyanova L., Danielyan F., 1986. New evidence of hybrid males of parthenogenetic lizards // Studies in Herpetology. Roček Z. (ed), Prague. P. 207–212.
  30. Dedukh D., Altmanová M., Klíma J., Kratochvíl L., 2022. Premeiotic endoreplication is essential for obligate parthenogenesis in geckos // Development. V. 149. № 7. dev200345. 384 https://doi.org/10.1242/dev.200345
  31. Dedukh D., Altmanová M., Petrosyan R., Arakelyan M., Galoyan E., Kratochvíl L., 2024. Premeiotic endoreplication is the mechanism of obligate parthenogenesis in rock lizards of the genus Darevskia // preprint: doi https://doi.org/10.11o1/2024.02.27.582286
  32. Freitas S., Rocha S., Campos J., Ahmadzadeh F., Corti C., et al., 2016. Parthenogenesis through the ice ages: a biogeographic analysis of Caucasian rock lizards (genus Darevskia) // Mol. Phylogenet. V. 102. P. 117–127.
  33. Freitas S., Harris D., Sillero N., Arakelyan M., Butlin R., et al., 2019. The role of hybridization in the origin and evolutionary persistence of vertebrate parthenogens: a case study of Darevskia lizards // Heredity. (Edinb.). V. 123. P. 795–808. https://doi.org/10.1038/s41437-019-0256-5
  34. Freitas S., Westram A., Schwander T., Arakelyan M., Ilgaz C., Kumlutas Y., et al., 2022. Parthenogenesis in Darevskia lizards: A rare outcome of common hybridization, not a common outcome of rare hybridization // Evolution. V. 76. № 5. P. 899–914. doi: 10.1111/evo.14462
  35. Fu J., Murphy R., Darevsky I., 1997. Toward the phylogeny of caucasian rock lizards: implications from mitochondrial DNA gene sequences (Reptilia: Lacertidae) // Zool. J. Linn. Soc. V. 120. P. 463–477.
  36. Fu J., MacCulloch R., Murphy R., Darevsky I., Kupriyanova L., et al., 1998. The parthenogenetic rock lizard Lacerta unisexualis: an example of limited genetic polymorphism // J. Mol. Evol. V. 46. P. 127–130.
  37. Fujita M., Singhal S., Btunes T., Maldonado J., 2020. Evolutionary dynamics and consequences of parthenogenesis in vertebrates // Annu. Rev. Ecol. Syst. V. 51. P. 191–214.
  38. Galoyan E., Moskalenko V., Gabelaia M., Tarkhnishvili D., Spangenberg V. et al., 2020. Syntopy of two species of rock lizards (Darevskia raddei and Darevskia portschinskii) may not lead to hybridization between them // Zool. Anz. V. 288. P. 43–52.
  39. Girnyk A., Vergun A., Semyenova S., Guliaev A., Arakelyan M., Danielyan F., et al., 2018. Multiple interspecific hybridization and microsatellite mutations provide clonal diversity in the parthenogenetic rock lizard Darevskia armeniaca // BMC Genomics. V. 19. P. 979. doi.org/10.1186/s12864=018-5359-5
  40. Kratochvíl L., Vukić J., Červenka J., Kubička L., Johnson Pokorná M., Kukačková D., et al., 2020. Mixed–sex offspring produced via cryptic parthenogenesis in a lizard // Mol. Ecol. V. 29. № 21. P. 4118–4127. https://doi.org/10.1111/mec.15617
  41. Kupriyanova L., 1989. Cytogenetic evidence for genome interaction in lacertid hybrid species // in: Evolution and Ecology in Unisexual Vertebrate. Bull. NY State Museum, Albany. N.Y., USA. V. 466. P. 236–239.
  42. Kupriyanova L., 1990. Cytogenetic studies in lacertid lizards // in: E. Olmo (ed). Cytogenetics of Amphibian and Reptiles. Advances Life Sciences. Basel: Birkhauser Verlag. Р. 241–245. ISBN3-7643-2358-2
  43. Kupriyanova L., 1992. Diversity in parthenogenetic lacertid lizards: cytogenetic studies // Proc. 6th Ord. Gen. Meet SHE. 19–23 August 1991. Budapest, Hungary. P. 273–279.
  44. Kupriyanova L., 2010. Cytogenetic and genetic trends in the evolution of unisexual lizards // Cytogen. Gen. Res. V. 127. № 2–4. P. 273–279. https://doi.org/10.1159/000303325
  45. Kupriyanova L., Safronova L., 2023. A brief review of meiotic chromosomes in early spermatogenesis and oogenesis and mitotic chromosomes in the viviparous lizard Zootoca vivipara (Squamata: Lacertidae) with Multiple Sex Chromosome // Animals. V. 13. № 19. P. 1–10. https://doi.org/10.3390/ani13010019
  46. Lowe C., Wright J., 1968. Chromosomes and karyotypes of Cnemidophorus teiid lizards // Mammalian Chromosomes Newsletter. № 22. P. 199–200.
  47. Lutes A., Neaves W., Baumann D., Wiegrabe W., Baumann P., 2010. Sister chromosome pairing maintains heterozygosity in parthenogenetic lizards // Nature. V. 11. № 464. P. 283–286. doi: 10.1038/nature08818
  48. MacCulloch R., Murphy R., Kupriyanova L., Darevsky I., Danielyan F., 1995. Clonal variation in the parthenogenetic rock lizard Lacerta armeniaca // Genome. V. 38. P. 1057–1060.
  49. Moritz C., Brown W., Densmore L., Wright J., Vyas D., Donnellan S., et al., 1989. Genetic diversity and the dynamics of hybrid parthenogenesis in Cnemidophorus (Teiidae) and Heteronotia (Gekkonidae) // Bulletin of the New York State Museum. Albany. V. 466. P. 87–112.
  50. Moritz C., Uzzell T., Spolsky C., Hotz H., Darevsky I., Kupriyanova L., et al., 1992. The material ancestry and approximate age of parthenogenetic species of Caucasian rock lizards (Lacerta: Lacertidae) // Genetica. V. 87. P. 53–62.
  51. Moritz C., Wright J.W., Brown C., 1992a. Mitochondrial DNA analysis and the origin and relative age of parthenogenetic Cnemidophorus: phylogenetic constraints on hybrid origins // Evolution. V. 46. P. 184–192.
  52. Murphy R., Darevsky I., MacCulloch R., Fu J., Kupriyanova L., 1996. Evolution of the bisexual specie of caucasian rock lizards: a phylogenetic evaluation of allozyme data // Russ. J. Herpetol. V. 3. № 1. P. 18–31.
  53. Murphy R., Darevsky I., Kupriyanova L., MacCulloch R., Fu J., 2000. A fine line between sex and unisexuality: the phylogenetic constraints on parthenogenesis in lacertid lizards // Zool. J. Linn. Soc. V. 130. № 4. P. 527–549. https://doi.org/10.1111/j.1096-3642.2000.tb02200.x
  54. Newton A., Schnittker R., Yu Z., Munday S., Baumann D., Neaves, W., et al., 2016. Widespread failure to complete meiosis does not impair fecundity in parthenogenetic whiptail lizards // Development. V. 143. № 3. P. 4486–4494. https://doi.org/10.1242/dev.141283
  55. Pellegrino K., Rodrigues M., Yonenaga–Yassuda Y., 2003. Triploid karyotype of Leposoma percarinatum (Squamata, Gymnophthalmidae) // Journal of Herpetology. V. 37. P. 197–199.
  56. Petrosyan V., Osipov F., Bobrov V., Dergunova N., Nazarenko E., et al., 2019. Analysis of geographical distribution of the parthenogenetic rock lizard Darevskia armeniaca and its parental species (D. mixta, D. valentini) based on ecological modelling // Salamandra. V. 55. P. 173–190.
  57. Petrosyan V., Osipov F., Bobrov V., Dergunova N., Kropachev I., Danielyan F., et al., 2020. New records and geographic distribution of the sympatric zones of unisexual and bisexual rock lizards of the genus Darevskia in Armenia and adjacent territories // Biodivers Data J.V. 8. P. 1–46. e56030.
  58. Rovatsos M., Vukic´ J., Mrugala A., Suwala C., Lymberakis P., Kratochvil L., 2019. Little evidence for switches to environmental sex determination and turnover of sex hromosomes in lacertid lizards // Sci. Reports. V. 9. P. 7832. https://doi.org/10.1038/s41598-019-44192-5
  59. Ryskov A., 2008. Genetically unstable microsatellite containing loci and genome diversity in clonally reproduced unisexual vertebrates // in: K.W. Jeon (еd). International Review of Cell and Molecular Biology. USA: Academic Press. V. 270. P. 319–349.
  60. Ryskov A., Osipov F., Omelchenko A., Semenova S., Girnyk A., Korchagin A., et al., 2017. The origin of multiple clones in the parthenogenetic lizard species Darevskia rostombekowi // PLoS ONE. Т. 12. № 9. e0185161
  61. Spangenberg V., Arakelyan M., Galoyan E., Matveevsky S., Petrosyan R., et al., 2017. Reticulate evolution of the rock lizards: meiotic chromosome dynamics and spermatogenesis in diploid and triploid males of the genus Darevskia // Genes. V. 8. P. 149.
  62. Spangenberg V., Arakelyan M., Cioffi M. d. B., Liehr T., Al-Rikabi A., Martynova E., et al., 2020. Cytogenetic mechanisms of unisexuality in rock lizards // Sci. Rep. V. 10. P. 8697.doi: 10.1038/s41598-020-65686-7
  63. Spangenberg V., Arakelyan M., Galoyan E., Martirosyan I., Bogomazova A., Martynova E., et al., 2021. Meiotic synapsis of homeologous chromosomes and mismatch repair protein detection in the parthenogenetic rock lizard Darevskia unisexualis // Mol. Reprod. Dev. V. 88. P. 119–127.doi: 10.1002/mrd.23450
  64. Spangenberg V., Arakelyan M., Simanovsky S., Dombrovskaya Y., Khachtryan E., Kolomiets O., 2024. Tendency towards clonality: deviations of meiosis in parthenogenetic Caucassian rock lizards // PREPRINT (Version 2) available at Research Square. https://doi.org/10.21203/rs.3.rs-3936576/v2
  65. Suomalainen E., Saura A., Lokki J., 1987. Cytology and Evolution in Parthenogenesis. Florida: Boca Raton, CRC Press, Inc. 93 p.
  66. Tarkhnishvili D., Yanchukov A., Şahin M., Gabelaia M., Murtskhvaladze M., Candan K., et al., 2020. Genotypic similarities among the parthenogenetic Darevskia rock lizards with different hybrid origins // BMC Evol. Biol. V. 20. P. 122.https://doi.org/10.1186/s12862-020-01690-9
  67. Trifonov V., Paolett A., Caputo Barucchi V., Kalinina T., O’brien P.C.M., Ferguson-Smith M., Giovannotti M., 2015. Comparative chromosome painting and NOR distribution suggest a complex hybrid origin of triploid Lepidodactylus lugubris (Gekkonidae) // PLoS One. V. 10. P. 1–13. doi: 10.1371/journal.pone.0132380
  68. Uzzell T., 1970. Meiotic mechanisms of naturally occurring unisexual vertebrates // Am. Nat. V. 104. № 938. P. 433–445.
  69. Uzzell T., Darevsky I., 1975. Biochemical evidence for the hybrid origin of the parthenogenetic species of the Lacerta saxicola complex (Sauria: Lacertidae), with a discussion of some ecological and evolutionary implications // Copeia. V. 2. P. 204–222.
  70. Vergun A., Martirosyan I., Semyenova S., Omelchenko A., Petrosyan V., Lazebny O., et al., 2014. Clonal diversity and clone formation in the parthenogenetic caucasian rock lizard Darevskia dahlia // PLoS ONE. e91674. P. 1–9. doi: 10.1371/journal.pone.0091674
  71. Vergun A., Girnyk A., Korchagin V., Semyenova S., Arakelyan M., Danielyan F., et al., 2020. Origin, clonal diversity, and evolution of the parthenogenetic lizard Darevskia unisexualis // BMC Genom. V. 21. P. 351. https://doi.org/10.1186/s12864-020-6759-x
  72. White J., Cotreras N., 1982. Cytogenetics of parthenogenetic grasshopper Warranaba virgo and its bisexual relatives. YIII. Karyotypes and C–banding patterns in the clones of W. wirgo // Cytogenetics Cell Genetics. V. 34. P. 168–177.
  73. Yanchukov A., Tarkhnishvili D., Erdolu M., Şahin M., Candan K., et al., 2022. Precise paternal ancestry of hybrid unisexual ZW lizards (genus Darevskia: Lacertidae: Squamata) revealed by Z-linked genomic markers // Biol. J. Linn. Soc. V. 20. Р. 1–13. 136. Iss. 2. Р. 293–305. https://doi.org/10.1093/biolinnean/black023

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences