Coordination Polymers Ca(II)–Cr(III) and Ba(II)–Cr(III) with Cyclobutane-1,1-dicarboxylic Acid Anions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The reactions of Cr(NO3)3 ⋅ 9H2O with barium and calcium salts of cyclobutane-1,1-dicarboxylic acid (H2Cbdc) in a ratio of 1 : 3 in an aqueous solution are studied. The reaction products isolated in the crystalline state are shown to be compounds formed by the binuclear tetraanionic units Cr2(OH)2(Cbdc)4] 4−, and the nature of the alkaline-earth metal ion introduced into the synthesis affects the dimensionality of the formed polymeric structure. The 2D polymeric compound Ba2Cr2(OH)2(Cbdc)4(H2O)5] ⋅ 3H2O}𝑛 (I) is formed in the reaction with Ba(Cbdc), and the replacement of Ba2+ by Ca2+ results in the formation of the 1D coordination polymer { Ca2Cr2(OH)(Cbdc)4(H2O)6] ⋅ 8H2O}𝑛 (II). The crystal structures of compounds I and II are determined by single-crystal XRD (CIF files CCDC nos. 2344872 (I) and 2344873 (II), respectively).

About the authors

E. S. Bazhina

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: evgenia-VO@mail.ru
Moscow, Russia

M. A. Shmelev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Moscow, Russia

M. A. Kiskin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Moscow, Russia

I. L. Eremenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Moscow, Russia

References

  1. Prodius D., Turta C., Mereacre V. et al. // Polyhedron. 2006. V. 25. P. 2175.
  2. Zhang H., Dong W.-K., Zhang Y., Akogun S.F. // Polyhedron. 2017. V. 133. P. 279.
  3. Goure E., Gerey B., Astudillo C.N. et al. // Inorg. Chem. 2021. V. 60. P. 7922.
  4. Zhang S., Liu X., Yang Q. et al. // CrystEngComm. 2015. V. 17. P. 3312.
  5. Zhou Q., Qian J., Zhang C. et al. // J. Mol. Struct. 2016. V. 1119, P. 340.
  6. Suku S., Ravindran R. // J. Mol. Struct. 2022. V. 1252. 132083.
  7. Ferrando-Soria J., Rood M.T.M., Julve M. et al. // CrystEngComm. V. 2012. V. 14. P. 761.
  8. Bo Q.-B., Wang H.-Y., Wang D.-Q. // New J. Chem. 2013. V. 37. P. 380.
  9. Phadungsak N., Kielar F., Dungkaew W. et al. // Acta Crystallogr. C. 2019. V. 75. P. 1372.
  10. Ji W.-J., Liu G.-F., Wang B.-Q. et al. // CrystEng-Comm. 2020. V. 22. P. 4710.
  11. Noh K., Ko N., Park H.J. et al. // CrystEngComm. 2014. V. 16. P. 8664.
  12. Xing G., Zhang Y., Zhang S. // Z. Anorg. Allg. Chem. 2015. V. 641. P. 1307.
  13. Mon M., Bruno R., Tiburcio E. et al. // J. Am. Chem. Soc. 2019. V. 141. P. 13601.
  14. Song Y., Wang B., Liu Y. et al. // Inorg. Chem. Commun. 2020. V. 121. P. 108202.
  15. Saha D., Hazr D.K., Maity T., Koner S. // Inorg. Chem. 2016. V. 55, P. 5729.
  16. Mon M., Ferrando-Soria J., Grancha T. et al. // J. Am. Chem. Soc. 2016. V. 138. P. 7864.
  17. Chen H., Fan L., Hu T., Zhang X. // Inorg. Chem. 2021. V. 60. P. 3384.
  18. Bulimestru I., Mentré O., Tancret N. et al. // J. Mater. Chem. 2010. V. 20. P. 10724.
  19. Zauzolkova N., Dobrokhotova Zh., Lermontov A. et al. // J. Solid State Chem. 2013. V. 197. P. 379.
  20. Ryumin M.A., Dobrokhotova Zh.V., Emelina A.L. et al. // Polyhedron. 2015. V. 87. P. 28.
  21. Calogero S., Stievano L., Diamandescu L. et al. // Polyhedron. 1997. V. 16. P. 3953.
  22. de Muro I.G., Insausti M., Lezama L. et al. // Dalton Trans. 2000. P. 3360.
  23. Djeghri A., Balegroune F., Guehria-Laidoudi A., Toupet L. // J. Chem. Crystallogr. 2005. V. 35. P. 603.
  24. Guo M.-L., Guo C.-H. // Acta Crystallogr. C. 2006. V. 62. P. m7.
  25. Djeghri A., Balegroune F., Laidoudi A.G., Toupet L. // Acta Crystallogr. C. 2006. V. 62. P. m126.
  26. Guo M.-L., Cao H.-X. // Acta Crystallogr. C. 2006. V. 62. P. m431.
  27. Fu X.-C., Li M.-T., Wang X.-Y. et al. // Acta Crystallogr. C. 2006. V. 62. P. m258.
  28. Fu X.-C., Nie L., Zhang Q. et al. // Chin. J. Struct. Chem. 2006. V. 25. P. 1449.
  29. Guo M.-L., Zhang H.-Y. // Acta Crystallogr. C. 2008. V. 64. P. m30.
  30. Fu X.-C., Wang C.-G., Li M.-T., Wang X.-Y. // Chin. J. Inorg. Chem. 2007. V. 23. P. 1784.
  31. Бажина Е.С., Гоголева Н. В., Зорина-Тихонова Е.Н. и др. // Журн. структур. химии. 2019. Т. 60. № 6. C. 893
  32. Bazhina E.S., Gogoleva N.V., Zorina-Tikhonova E.N. et al. // J. Struct. Chem. 2019. V. 60. P. 855.
  33. Bazhina E.S., Kiskin M.A., Korlyukov A.A. et al. // Eur. J. Inorg. Chem. 2020. V. 2020. P. 4116.
  34. Masters V., Gahan L.R., Kennard C.H.L. // Acta Crystallogr. C. 1997. V. 53. P. 1576.
  35. Bélombé M.M., Nenwa J., Mbiangué Y.-A. et al. // Dalton Trans. 2003. P. 2117.
  36. Mbiangué Y.A., Ndinga M.L., Nduga J.P. et al. // Acta Crystallogr. E. 2020. V. 76. P. 1316.
  37. Choubeu C.M.N., Ndosiri B.N., Vezin H. et al. // Polyhedron. 2021. V. 193. P. 114885.
  38. Novitchi G., Costes J.-P., Ciornea V. et al. // Eur. J. Inorg. Chem. 2005. V. 2005. P. 929.
  39. Visser H.G. // Acta Crystallogr. E. 2006. V. 62. P. m3272.
  40. Novitchi G., Ciornea V., Shova S. et al. // Eur. J. Inorg. Chem. 2008. V. 2008. P. 1778.
  41. Mukkamala S.B., Clérac R., Anson C.E., Powell A.K. // Polyhedron. 2006. V. 25. P. 530.
  42. Цабель М., Позняк А.Л., Павловский В.И. // Журн. структур. химии. 2007. Т. 48. № 4. С. 747
  43. Zabel M., Poznyak A.L., Pawlowski V.I. // J. Struct. Chem. 2007. V. 48. P. 698.
  44. Ciornea V., Mingalieva L., Costes J.-P. et al. // Inorg. Chim. Acta. 2008. V. 361. P. 1947.
  45. Цабель М., Павловский В.И., Позняк А.Л. // Журн. структур. химии. 2009. Т. 50. № 3. С. 602
  46. Zabel M., Pawlowski V.I., Poznyak A.L. // J. Struct. Chem. 2009. V. 50. P. 582.
  47. Warżajtis B., Rychlewska U., Radanović D.D. et al. // Polyhedron. 2014. V. 67. P. 270.
  48. Бажина Е.С., Шмелев М.А., Корлюков А.А. и др. // Коорд. химия. 2021. Т. 47. № 2. С. 69
  49. Bazhina E.S., Shmelev M.A., Korlyukov A.A. et al. // Russ. J. Coord. Chem. 2021. V. 47. P. 105.
  50. Бажина Е.С., Шмелев М.А., Кискин М.А., Еременко И.Л. // Журн. структур. химии. 2023. Т. 64. № 4. P. 108431
  51. Bazhina E.S., Shmelev M.A., Kiskin M.A., Eremenko I.L. // J. Struct. Chem. 2023. V. 64. P. 550.
  52. Бажина Е.С., Шмелев М.А., Корлюков А.А. и др. // Изв. АН. Сер. хим. 2024. Т. 73. № 4. P. 890.
  53. Гоголева Н.В., Блинов Д.О., Новикова У.В. и др. // Журн. структур. химии. 2023. Т. 64. № 6. P. 112188
  54. Gogoleva N.V., Blinou D.O., Novikova U.V. et al. // J. Struct. Chem. 2023. V. 64. P. 1059.
  55. SMART (сontrol) and SAINT (integration) Software. Version 5.0. Madison (WI, USA): Bruker AXS, Inc., 1997.
  56. Sheldrik G.M. SADABS. Program for Scanning and Correction of Area Detector Data. Göttingen (Germany): Univ. of Göttingen, 2004.
  57. Spek A.L. // Acta Crystallogr. C. 2015. V. 71. P. 9.
  58. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  59. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
  60. Llunell M., Casanova D., Cirera J. et al., Alvarez S. SHAPE, version 2.1. Program for the Stereochemical Analysis of Molecular Fragments by Means of Continuous Shape Measures and Associated Tools. Barselona (Spain), 2013.
  61. Alvarez S., Alemany P., Casanova D. et al. // Coord. Chem. Rev. 2005. V. 249. P. 1693.
  62. Рабинович В.А., Хавин З.Я. Краткий химический справочник. Л.: Химия, 1978. С. 22.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Российская академия наук