SYNTHESIS, STRUCTURE, AND OPTICAL PROPERTIES OF CYCLOMETALATED IRIDIUM(III) COMPLEXES WITH 2-ARYLBENZIMIDAZOLES AND PYRAZINO[2,3-F][1,10]PHENANTHROLINE

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Two new iridium(III) complexes with benzimidazole ligands differing in the size of the aromatic system and an auxiliary N-donor ligand with extended conjugated system have been synthesized and studied structurally and spectroscopically. Comparison of the results of crystal packing analysis and data of electronic absorption spectroscopy, diffuse reflectance spectroscopy, and luminescence spectroscopy shows that intermolecular π–π interactions between the benzimidazole ligands have little effect on the optical characteristics of the complexes. Both compounds exhibit light absorption in the range of 250–550 nm (e = 58 000–1 000 M–1cm–1) both in solution and in the solid phase (Eg = 2.14–2.16 eV) and emit in the orange region (λmax = 558–585 nm), with the solid-state emission maxima systematically red-shifted by about 25 nm. The results of the work allow a better understanding of the influence of crystal packing on the optical properties of iridium(III) complexes and will be used for further development of approaches to the crystal chemistry design of luminescent iridium compounds in the long-wavelength range.

Sobre autores

E. Sholina

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; National Research University, Higher School of Economics

Autor responsável pela correspondência
Email: bezzubov@igic.ras.ru
Moscow, Russia; Moscow, Russia

S. Bezzubov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; National Research University, Higher School of Economics

Email: bezzubov@igic.ras.ru
Moscow, Russia; Moscow, Russia

Bibliografia

  1. Tritton D.N., Tang F.-K., Bodedla G.B. et al. // Coord. Chem. Rev. 2022. V. 459. P. 214390. https://doi.org/10.1016/j.ccr.2021.214390
  2. Bawden J.C., Francis P.S., DiLuzio S. et al. // J. Am. Chem. Soc. 2022. V. 144. № 25. P. 11189. https://doi.org/10.1021/jacs.2c02011
  3. Ruggeri D., Hoch M., Spataro D. et al. // Chem. Eur. J. 2025. V. 31. № 18. https://doi.org/10.1002/chem.202403309
  4. Nykhrikova E.V., Kiseleva M.A., Kalle P. et al. // Inorg. Chem. 2025. V. 64. № 10. P. 5210. https://doi.org/10.1021/acs.inorgchem.5c00155
  5. Mal’tsev E.I., Lypenko D.A., Dmitriev A. V. et al. // Russ. J. Coord. Chem. 2023. V. 49. № S1. P. S2. https://doi.org/10.1134/S107032842360078X
  6. Burlov A.S., Vlasenko V.G., Garnovskii D.A. et al. // Russ. J. Coord. Chem. 2023. V. 49. № S1. P. S68. https://doi.org/10.1134/S1070328423600857
  7. Tatarin S.V., Krasnov L.V., Nykhrikova E.V. et al. // J. Mater. Chem. C 2025. https://doi.org/10.1039/D5TC00305A
  8. Burlov A.S., Koshchienko Y.V., Vlasenko V.G. et al. // Inorg. Chim. Acta. 2018. V. 482. P. 863. https://doi.org/10.1016/j.ica.2018.07.037
  9. Kostova I. // Molecules. 2025. V. 30. № 4. P. 801. https://doi.org/10.3390/molecules30040801
  10. Krasnov L., Tatarin S., Smirnov D. et al. // Sci. Data. 2024. V. 11. № 1. P. 870. https://doi.org/10.1038/s41597-024-03735-w
  11. Milaeva E.R. // Russ. J. Coord. Chem. 2024. V. 50. № 12. P. 1043. https://doi.org/10.1134/S1070328424600815
  12. Wu C., Shi K., Li S. et al. // EnergyChem. 2024. V. 6. № 2. P. 100120. https://doi.org/10.1016/j.enchem.2024.100120
  13. Yan J., Wu C., Yiu S. et al. // Adv. Opt. Mater. 2025. V. 13. № 4. https://doi.org/10.1002/adom.202402332
  14. Yan J., Wu Y., Huang M. et al. // Angew. Chem. Int. Ed. 2025. https://doi.org/10.1002/anie.202424694
  15. Wang X., Wu C., Tong K. et al. // Adv. Opt. Mater. 2025. https://doi.org/10.1002/adom.202403273
  16. Hong G., Gan X., Leonhardt C. et al. // Adv. Mater. 2021. V. 33. № 9. https://doi.org/10.1002/adma.202005630
  17. Mal’tsev E.I., Lypenko D.A., Pozin S.I. et al. // Russ. J. Coord. Chem. 2023. V. 49. № S1. P. S18. https://doi.org/10.1134/S1070328423600808
  18. Wu Y., Huang M., Cheng L. et al. // Angew. Chemie Int. Ed. 2025. V. 64. № 11. https://doi.org/10.1002/anie.202421664
  19. Hung C.-M., Wang S.-F., Chao W.-C. et al. // Nat. Commun. 2024. V. 15. № 1. P. 4664. https://doi.org/10.1038/s41467-024-49127-x
  20. Yao R., Hu X., Meng Q. et al. // J. Photochem. Photobiol. A.. 2025. V. 461. P. 116170. https://doi.org/10.1016/j.jphotochem.2024.116170
  21. Sreejith S., Ajayan J., Reddy N.V.U. et al. // Micro Nanostructures, 2025. V. 200. P. 208101. https://doi.org/10.1016/j.micrna.2025.208101
  22. Longhi E., De Cola L. // Iridium(III) Optoelectron. Photonics Appl., Wiley, 2017. P. 205. https://doi.org/10.1002/9781119007166.ch6
  23. Wang S.-F., Su B.-K., Wang X.-Q. et al. // Nat. Photonics. 2022. V. 16. № 12. P. 843. https://doi.org/10.1038/s41566-022-01079-8
  24. Zhao Q., Li L., Li F. et al. // Chem. Commun. 2008. № 6. P. 685. https://doi.org/10.1039/B712416C
  25. Gautam A., Gupta A., Prasad P. et al. // Dalton Trans. 2023. V. 52. № 23. P. 7843. https://doi.org/10.1039/D3DT00628J
  26. Yang K., Tang H., Jiao Y. et al. // J. Lumin. 2023. V. 257. P. 119721. https://doi.org/10.1016/j.jlumin.2023.119721
  27. Mondal A., Chattopadhyay P. // New J. Chem. 2023. V. 47. № 10. P. 4984. https://doi.org/10.1039/D2NJ06121J
  28. Kiseleva M.A., Churakov A. V., Taydakov I. V. et al. // Dalton Trans. 2023. V. 52. № 47. P. 17861. https://doi.org/10.1039/D3DT02651E
  29. Liu J., Vellaisamy K., Yang G. et al. // Sci. Rep. 2017. V. 7. № 1. P. 3620. https://doi.org/10.1038/s41598-017-03952-x
  30. Николаевский С.А., Ямбулатов Д.С., Старикова А.А. и др. // Коорд. химия 2020. Т. 46. № 4. С. 241. https://doi.org/10.31857/S0132344X20040052 (Nikolaevskii S.A., Yambulatov D.S., Starikova A.A. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 4. P. 260. https://doi.org/10.1134/S1070328420040053)
  31. Мельников С.Н., Рубцова И.К., Николаевский С.А. и др. // Коорд. химия 2025. Т. 51. № 3. С. 145. https://doi.org/10.31857/S0132344X25030015 (Melnikov S.N., Rubtsova I.K., Nikolaevskii S.A. et al. // Russ. J. Coord. Chem. 2024. V. 50. № 11. P. 873. https://doi.org/10.1134/S1070328424600761)
  32. Золотухин А.А., Бубнов М.П., Румянцев Р.В. и др. // Коорд. химия. 2023. Т. 49. № 3. С. 174. https://doi.org/10.31857/S0132344X22700165 (Zolotukhin A.A., Bubnov M.P., Rumyantsev R.V. et al. // Russ. J. Coord. Chem. 2023. V. 49. № 3. P. 158. https://doi.org/10.1134/S1070328422700270)
  33. Klimashevskaya A.V., Arsenyeva K.V., Cherkasov A.V. et al. // J. Struct. Chem. 2023. V. 64. № 12. P. 2271. https://doi.org/10.1134/S0022476623120016
  34. Zakharov A.Y., Kovalenko I.V., Meshcheriakova E.A. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 12. P. 846. https://doi.org/10.1134/S1070328422700051
  35. Смирнов Д.Е., Татарин С.В., Киселева М.А. и др. // Журн. неорган. химии 2023. Т. 68. № 9. С. 1202. https://doi.org/10.31857/S0044457X23601049 (Smirnov D.E., Tatarin S.V., Kiseleva M.A. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 9. P. 1178). https://doi.org/10.1134/S0036023623601605
  36. Sheldrick G.M. // SADABS. Version 2008/1. 2008. Bruker AXS Inc. Germany.
  37. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
  38. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  39. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
  40. Zhao J.-H., Hu Y.-X., Dong Y. et al. // New J. Chem. 2017. V. 41. № 5. P. 1973. https://doi.org/10.1039/C6NJ03634A
  41. Cao H.-T., Shan G.-G., Zhang B. et al. // J. Mol. Struct. 2012. V. 1026. P. 59. https://doi.org/10.1016/j.molstruc.2012.05.004
  42. Tatarin S.V., Smirnov D.E., Taydakov I.V. et al. // Dalton Trans. 2023. V. 52. № 19. P. 6435. https://doi.org/10.1039/D3DT00200D

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025