Применение нейтронопоглощающих композитов на основе термоэластопласта и нитрида бора в 3d-печати

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Разработан новый композиционный материал на основе термоэластопласта для 3D-печати нейтронопоглощающих изделий. Показано,что использование термоэластопласта при разработке материала для 3D-печати изделий позволяетобеспечить требуемые свойства поглощения нейтронов, существенно повысив технологичность композиции и сохранив возможность применять композиции в аддитивных технологиях. Концентрация нитрида борав композите, позволяющая достичь эффекта поглощения материалом нейтронного излучения 2.4Å/1.2 Å (3/1) на глубину проникновения в 1.4 мм, присохранении его физико-механических свойств, составило 25%. Физико-механические характеристики разработанного материалане уступают ненаполненным пластикам: прочность при растяжении σmax = 8.1МПа, сопротивление раздиру составилоTs = 76 Н/м.

About the authors

M. V. Timoshenko

National Research Center “Kurchatov Institute” – PIKS–IHS

Email: Timoshe-mikhail@mail.ru
199034, Russia, Saint Petersburg, Naberezhnaya Makarova, 2

M. M. Sychev

National Research Center “Kurchatov Institute” – PIKS–IHS; Saint Petersburg State Technological Institute (Technical University)

199034, Russia, Saint Petersburg, Naberezhnaya Makarova, 2; 190013, Russia, Saint Petersburg, Moskovsky Pr., 24–26/49

S. V. D'yachenko

National Research Center “Kurchatov Institute” – PIKS–IHS; Saint Petersburg State Technological Institute (Technical University)

199034, Russia, Saint Petersburg, Naberezhnaya Makarova, 2; 190013, Russia, Saint Petersburg, Moskovsky Pr., 24–26/49

V. V. Tarnavich

National Research Center “Kurchatov Institute” – PIK

188300, Russia, Leningrad Oblast, Gatchina, Microdistrict Orlovaya Rosha 1

Y. O. Chetverikov

National Research Center “Kurchatov Institute” – PIK

188300, Russia, Leningrad Oblast, Gatchina, Microdistrict Orlovaya Rosha 1

M. M. Murashov

National Research Center “Kurchatov Institute”

123182, Russia, Moscow, Akademika Kurchatova Square, 1

References

  1. Huang Y., Zhang W., Liang L.,Xu J., Chen Z.A “Sandwich” type of neutron shieldingcomposite filled with boron carbide reinforced by carbon fiber //Chem. Engineering J. 2013 V. 220. P. 143–150.
  2. OlssonA., Rennie A.R. Boron carbide composite apertures for small-angleneutron scattering made by three-dimensional printing //J. Appl. Cryst.2016. V. 49. P. 696–699.
  3. Chetverikov Yu.O., Bykov A.A.,Krotov A.V., Mistonov A.A., Murashev M.M., Smirno, I.V., Tarnavich V.V. Boron-containing plastic composites as neutron shielding material for additive manufacturingprocesses //Nuclear Instruments and Methods in Physics Research. 2023.V. 1055. P. 168406.
  4. Dorigato A., Moretti V., DulS., Unterberger S.H., Pegoretti A. Electrically conductive nanocomposites forfused deposition modelling //Synth. Met. 2017. V. 226. P. 7–14.
  5. Sandler N., Salmela I., Fallarero A., Rosling A.,Khajeheian M., Kolakovic R., Genina N., Nyman J., Vuorela P. Towards fabrication of 3D printed medical devices to prevent biofilm formation //Int. J. Pharm.2014. V. 459. P. 62–64.
  6. Muwaffak Z., Goyanes A., Clark V., Basit A.W., Hilton S.T., Gaisford S. Patient-specific 3Dscanned and 3D printed antimicrobial polycaprolactone wound dressings //Int.J. Pharm. 2017. V. 527. P. 161–170.
  7. Hosseini M.A.,Malekie S., Kazemi F. Experimental evaluation of gamma radiation shieldingcharacteristics of Polyvinyl Alcohol/Tungsten oxide composite: A comparison study ofmicro and nano sizes of the fillers //Nuclear Instrumentsand Methods in Physics Research Section A Accelerators Spectrometers Detectorsand Associated Equipment. 2022. V. 1026. P. 166214.
  8. VozarovaM., Neubauer E., Baca L., Kitzmantel M., Feranc J., Trembosova V., Peciar P., Samardziova M., Horvath Orlovska M., Janek M. Preparation of Fully Dense Boron Carbide Ceramics by FusedFilament Fabrication (FFF) //J. Eur. Ceramic Society. 2022. Vol.43.
  9. Olsson A., Hellsing M.S., Rennie A.R. New possibilities usingadditive manufacturing with materials that are difficult to process andwith complex structures //Phys. Scr. 2017. V. 92. P. 053002.
  10. Stone M.B., Siddel D.H., Elliott A.M., Anderson D.,Abernathy D.L.,Characterization of plastic and boron carbide additive manufacturedneutron collimators //Rev. Sci. Instrum. 2017. V. 88. P. 123102.
  11. Lu R., Chandrasekaran S., Du Frane W.L., Landingham R.L.,Worsley M.A., Kuntz J.D. Complex shaped boron carbides from negativeadditive manufacturing //Mater. Des. 2018. V. 148. P. 8–16.
  12. Lu R., Miller D.J., Du Frane W.L., Chandrasekaran S., Landingham R.L., Worsley M.A., Kuntz J.D. Negative additive manufacturing of complexshaped boron carbides //JoVE. 2018. V. 139. P. e58438.
  13. Szentmiklósi L., Maróti B., Kis Z., Janik J., Horváth L.Z. Use of 3D mesh geometries and additive manufacturing in neutronbeam experiments //Nucl. Chem. 2019. V. 320. P. 451.
  14. Kharita M.H., Yousef S., Alnassar M. Review onthe addition of boron compounds to radiation shielding concrete //Prog. Nucl. Energy. 2011. V. 53. P. 207–211.
  15. Yilmaz E.,Baltas H., Kiris E., Ustabas I., Cevik U., El-Khayatt A. M. Gamma ray and neutron shielding properties of some concrete material //Ann. Nucl. Energy. 2011. V. 38. P. 2204–2212.
  16. WoosleyS., Galehdari N.A., Kelkar A., Aravamudhan S. Fused deposition modeling3D printing of boron nitride composites for neutron radiation shielding //J. Mater. Res. 2018. V. 33. P. 3657–3664.
  17. OzdemirT., Gungor A., Reyhancan I.A. Flexible neutron shielding composite materialof EPDM rubber with boron trioxide: Mechanical, thermal investigations andneutron shielding tests //Radiat. Phys. Chem. 2017. V. 131.P. 7–12.
  18. Ninyong K., Wimolmala E., Sombatsompop N., Saenboonruang K. Potential use of NR and wood/NR composites as thermal neutronshielding materials //Polym. Test. 2017. V. 59. P. 336–343.
  19. Lindquist K., Kline D.E., Lambert R. Radiation-induced changes in thephysical properties of BoraflexTM, a neutron absorber material for nuclearapplications //J. Nucl. Mater. 1994. V. 217. P. 223–228.
  20. Jun I., Song M.J. Nuclear analysis for the boraflexused in a typical spent-fuel storage assembly //J. Nucl.Technol. 1995. V. 109. P. 357–365.
  21. Chai H., Tang X.,Ni M., Chen F., Zhang Y., Chen D., Qiu Y. Preparation and properties of flexible flame-retardant neutron shielding material basedon methyl vinyl silicone rubber //J. Nucl. Mater. 2015.V. 464. P. 210–215.
  22. Gong P., Ni M., Chai H.,Chen F., Tang X. Preparation and characteristics of aflexible neutron andγ-ray shielding and radiation-resistant material reinforced bybenzophenone //Nucl. Eng. Technol. 2018. V. 50. P. 470–477.
  23. Dubey K.A., Chaudhari C.V., Suman S.K.,Raje N., Mondal R.K., Grover V., MuraliS., Bhardwaj Y.K., Varshney L. Synthesis of flexible polymeric shieldingmaterials for soft gamma rays: Physicomechanical and attenuation characteristics ofradiation crosslinked polydimethylsiloxane/Bi2O3composites //Polym. Compos. 2016. V.37. P. 756–762.
  24. Mesbahi A., Verdipoor K., Zolfagharpour F., AlemiA., Investigation of fast neutron shielding properties of newpolyurethane based composites loaded with B4C, BeO, WO3, ZnO, andGd2O3micro- and nanoparticles //Pol. J. Med. Phys. Eng.2019. V. 25. P. 211–219.
  25. Cataldo F., Prata M., Newcomposites for neutron radiation shielding //J. Radioanal. Nucl. Chem.2019. V. 320. P. 831–839.
  26. Jun J., Kim J., BaeY., Seo Y.S. Enhancement of dispersion and adhesion of B4Cparticles in epoxy resin using direct ultrasonic excitation //J. Nucl. Mater. 2011. V. 416. P. 293–297.
  27. Li Z., Xue X., Jiang T., Yang H., Zhou M. Study onthe properties of boron containing ores/epoxy composites for slow neutronshielding //Adv. Mater. Res. 2011. V. 201–203. P. 2767–2771.
  28. Lee M.K., Lee J.K., Kim J.W., Lee G.J. Properties ofB4C–PbO–Al(OH)3-epoxynanocomposite prepared by ultrasonic dispersion approach for high temperature neutronshields //J. Nucl. Mater. 2014. V. 445. P. 63–71.
  29. Stone M.B., Crow L., Fanelli V.R., Niedziela J.L. Characterization ofshielding materials used in neutron scattering instrumentation //Nucl. Instrum.Methods Phys. Res. A 2019. V. 946. P. 162708.
  30. Stegn E.V., Zuev K.V., Grachev A.V., Lalayan V.M., Patlazhan S.A., Shaulov A. Yu., Berlin A.A. Features of the meltflow of polyethylene and boron oxide oligomer blends //Polym.Sci. Ser. A. 2014. V. 56. P. 169–172.
  31. Ivanov S.M.,Kuznetsov S.A., Volkov A.E., Terekhin P.N., Dmitriev S.V., Tcherdyntsev V.V.,Gorshenkov M.V., Boykov A.A. Photons transport through ultrahigh molecular weightpolyethylene based composite containing tungsten and boron carbide fillers //J. Alloys Compd. 2014. V. 586. P. 455–458.
  32. Harrison C.,Weaver S., Bertelsen C., Burgett E., Hertel N., Grulke E. Polyethylene/boron nitride composites for space radiation shielding //J. Appl.Polym. Sci. 2008. V. 109. P. 2529–2538.
  33. Bewley D.K., MeuldersJ.-P., Page B.C. New neutron sources for radiotherapy //Phys.Med. Biol. 1984. V. 29. P. 341–349.
  34. Zhang Y., ChenF., Tang X., Huang H., Chen T., Sun X. Boracicpolyethylene/polyethylene wax blends and open-cell nickel foams as neutron-shielding composite //J. Reinf. Plast. Compos. 2018. V. 37. P. 181–190.
  35. Colin X., Monchy-Leroy C., Audouin L., Verdu J. Lifetime predictionof polyethylene in nuclear plants //Nucl. Instrum. Methods Phys.Res. B. 2007. V. 265. P. 251–255.
  36. Nambiar S., Yeow J.T.W.Polymer-composite materials for radiation protection //ACS Appl. Mater.Interfaces. 2012. V. 4. P. 5717–5726.
  37. Wundrich K.A, review ofradiation resistance for plastic and elastomeric materials //Radiat. Phys.Chem. 1985. V. 24. P. 503–510.
  38. Rennie A.R., EngberA., Eriksson O., Dalgliesh R.M. Understanding neutron absorption andscattering in a polymer composite material //Nuclear Inst. andMethods in Physics Research, A. 2020. V. 84. P. 164613.
  39. Leigh S.J., Bradley R.J., Purssell C.P., Billson D.R., Hutchins D.A. A simple, low-cost conductive composite materialfor 3D printing of electronic sensors //PLoS One. 2012.V. 7. P. e49365.
  40. Widmann T., Kreuzer L.P., Mangiapia G.,Haese M., Frielinghaus H., Müller-Buschbaum P. 3D printed spherical environmentalchamber for neutron reflectometry and grazing-incidence small-angle neutron scattering experiments //Rev. Sci. Instrum. 2020. V. 91. P. 113903.
  41. Somenkov V.A., Glazkov V.P., Em V.T., Gureev A.I., Murashev M.M., Sadykov R.A., Kravchuk L.V. On the complex radiation diagnostics facility DRAGON //J. Surf. Investig.: X-Ray, Synchrotron Neutron Tech. 2019. V.13. P. 870–876.
  42. Timoshenko M.V., Lisyanskaya M.V., Sychev M.M., Britov V.P. Influence of Reinforcing Fillers on the Mechanical Characteristicsof Thermoelastoplastic Elastomers Developed for 3D Printing //Glass Phys.Chem. 2024. V. 50. No 6. P. 695–704.
  43. Timoshenko M.V., Balabanov S.V., Sychov M.M Koshevaya K.S., Dolmatov V. Yu., Britov V.P. The Effect of the Introduction of DetonationNanodiamonds on the Physical and Mechanical Characteristics of Thermoplastic Elastomers //Glass Phys. Chem. 2023. V. 49. P. 314–318.
  44. Timoshenko M.V., Balabanov S.V., Sychov M.M. Influence of nanofiller distribution onthe physical and mechanical characteristics of thermoplastic elastomers //GlassPhys. Chem. 2023. V. 49. P. 546–553.
  45. Timoshenko M.V., Balabanov S.V., Sychev M.M., Nikiforov D.I. Application of Thermoplastic Elastomer for3D Printing by Fused Deposition Modeling(FDM) //Glass Phys. Chem. 2021. V. 47. P. 502–504.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences