Применение нейтронопоглощающих композитов на основе термоэластопласта и нитрида бора в 3d-печати
- 作者: Timoshenko M.V.1, Sychev M.M.1,2, D'yachenko S.V.1,2, Tarnavich V.V.3, Chetverikov Y.O.3, Murashov M.M.4
-
隶属关系:
- National Research Center “Kurchatov Institute” – PIKS–IHS
- Saint Petersburg State Technological Institute (Technical University)
- National Research Center “Kurchatov Institute” – PIK
- National Research Center “Kurchatov Institute”
- 期: 卷 51, 编号 3 (2025)
- 页面: 319-335
- 栏目: Articles
- URL: https://rjdentistry.com/0132-6651/article/view/691831
- DOI: https://doi.org/10.7868/S3034613425030031
- ID: 691831
如何引用文章
详细
作者简介
M. Timoshenko
National Research Center “Kurchatov Institute” – PIKS–IHS
Email: Timoshe-mikhail@mail.ru
199034, Russia, Saint Petersburg, Naberezhnaya Makarova, 2
M. Sychev
National Research Center “Kurchatov Institute” – PIKS–IHS; Saint Petersburg State Technological Institute (Technical University)199034, Russia, Saint Petersburg, Naberezhnaya Makarova, 2; 190013, Russia, Saint Petersburg, Moskovsky Pr., 24–26/49
S. D'yachenko
National Research Center “Kurchatov Institute” – PIKS–IHS; Saint Petersburg State Technological Institute (Technical University)199034, Russia, Saint Petersburg, Naberezhnaya Makarova, 2; 190013, Russia, Saint Petersburg, Moskovsky Pr., 24–26/49
V. Tarnavich
National Research Center “Kurchatov Institute” – PIK188300, Russia, Leningrad Oblast, Gatchina, Microdistrict Orlovaya Rosha 1
Y. Chetverikov
National Research Center “Kurchatov Institute” – PIK188300, Russia, Leningrad Oblast, Gatchina, Microdistrict Orlovaya Rosha 1
M. Murashov
National Research Center “Kurchatov Institute”123182, Russia, Moscow, Akademika Kurchatova Square, 1
参考
- Huang Y., Zhang W., Liang L.,Xu J., Chen Z.A “Sandwich” type of neutron shieldingcomposite filled with boron carbide reinforced by carbon fiber //Chem. Engineering J. 2013 V. 220. P. 143–150.
- OlssonA., Rennie A.R. Boron carbide composite apertures for small-angleneutron scattering made by three-dimensional printing //J. Appl. Cryst.2016. V. 49. P. 696–699.
- Chetverikov Yu.O., Bykov A.A.,Krotov A.V., Mistonov A.A., Murashev M.M., Smirno, I.V., Tarnavich V.V. Boron-containing plastic composites as neutron shielding material for additive manufacturingprocesses //Nuclear Instruments and Methods in Physics Research. 2023.V. 1055. P. 168406.
- Dorigato A., Moretti V., DulS., Unterberger S.H., Pegoretti A. Electrically conductive nanocomposites forfused deposition modelling //Synth. Met. 2017. V. 226. P. 7–14.
- Sandler N., Salmela I., Fallarero A., Rosling A.,Khajeheian M., Kolakovic R., Genina N., Nyman J., Vuorela P. Towards fabrication of 3D printed medical devices to prevent biofilm formation //Int. J. Pharm.2014. V. 459. P. 62–64.
- Muwaffak Z., Goyanes A., Clark V., Basit A.W., Hilton S.T., Gaisford S. Patient-specific 3Dscanned and 3D printed antimicrobial polycaprolactone wound dressings //Int.J. Pharm. 2017. V. 527. P. 161–170.
- Hosseini M.A.,Malekie S., Kazemi F. Experimental evaluation of gamma radiation shieldingcharacteristics of Polyvinyl Alcohol/Tungsten oxide composite: A comparison study ofmicro and nano sizes of the fillers //Nuclear Instrumentsand Methods in Physics Research Section A Accelerators Spectrometers Detectorsand Associated Equipment. 2022. V. 1026. P. 166214.
- VozarovaM., Neubauer E., Baca L., Kitzmantel M., Feranc J., Trembosova V., Peciar P., Samardziova M., Horvath Orlovska M., Janek M. Preparation of Fully Dense Boron Carbide Ceramics by FusedFilament Fabrication (FFF) //J. Eur. Ceramic Society. 2022. Vol.43.
- Olsson A., Hellsing M.S., Rennie A.R. New possibilities usingadditive manufacturing with materials that are difficult to process andwith complex structures //Phys. Scr. 2017. V. 92. P. 053002.
- Stone M.B., Siddel D.H., Elliott A.M., Anderson D.,Abernathy D.L.,Characterization of plastic and boron carbide additive manufacturedneutron collimators //Rev. Sci. Instrum. 2017. V. 88. P. 123102.
- Lu R., Chandrasekaran S., Du Frane W.L., Landingham R.L.,Worsley M.A., Kuntz J.D. Complex shaped boron carbides from negativeadditive manufacturing //Mater. Des. 2018. V. 148. P. 8–16.
- Lu R., Miller D.J., Du Frane W.L., Chandrasekaran S., Landingham R.L., Worsley M.A., Kuntz J.D. Negative additive manufacturing of complexshaped boron carbides //JoVE. 2018. V. 139. P. e58438.
- Szentmiklósi L., Maróti B., Kis Z., Janik J., Horváth L.Z. Use of 3D mesh geometries and additive manufacturing in neutronbeam experiments //Nucl. Chem. 2019. V. 320. P. 451.
- Kharita M.H., Yousef S., Alnassar M. Review onthe addition of boron compounds to radiation shielding concrete //Prog. Nucl. Energy. 2011. V. 53. P. 207–211.
- Yilmaz E.,Baltas H., Kiris E., Ustabas I., Cevik U., El-Khayatt A. M. Gamma ray and neutron shielding properties of some concrete material //Ann. Nucl. Energy. 2011. V. 38. P. 2204–2212.
- WoosleyS., Galehdari N.A., Kelkar A., Aravamudhan S. Fused deposition modeling3D printing of boron nitride composites for neutron radiation shielding //J. Mater. Res. 2018. V. 33. P. 3657–3664.
- OzdemirT., Gungor A., Reyhancan I.A. Flexible neutron shielding composite materialof EPDM rubber with boron trioxide: Mechanical, thermal investigations andneutron shielding tests //Radiat. Phys. Chem. 2017. V. 131.P. 7–12.
- Ninyong K., Wimolmala E., Sombatsompop N., Saenboonruang K. Potential use of NR and wood/NR composites as thermal neutronshielding materials //Polym. Test. 2017. V. 59. P. 336–343.
- Lindquist K., Kline D.E., Lambert R. Radiation-induced changes in thephysical properties of BoraflexTM, a neutron absorber material for nuclearapplications //J. Nucl. Mater. 1994. V. 217. P. 223–228.
- Jun I., Song M.J. Nuclear analysis for the boraflexused in a typical spent-fuel storage assembly //J. Nucl.Technol. 1995. V. 109. P. 357–365.
- Chai H., Tang X.,Ni M., Chen F., Zhang Y., Chen D., Qiu Y. Preparation and properties of flexible flame-retardant neutron shielding material basedon methyl vinyl silicone rubber //J. Nucl. Mater. 2015.V. 464. P. 210–215.
- Gong P., Ni M., Chai H.,Chen F., Tang X. Preparation and characteristics of aflexible neutron andγ-ray shielding and radiation-resistant material reinforced bybenzophenone //Nucl. Eng. Technol. 2018. V. 50. P. 470–477.
- Dubey K.A., Chaudhari C.V., Suman S.K.,Raje N., Mondal R.K., Grover V., MuraliS., Bhardwaj Y.K., Varshney L. Synthesis of flexible polymeric shieldingmaterials for soft gamma rays: Physicomechanical and attenuation characteristics ofradiation crosslinked polydimethylsiloxane/Bi2O3composites //Polym. Compos. 2016. V.37. P. 756–762.
- Mesbahi A., Verdipoor K., Zolfagharpour F., AlemiA., Investigation of fast neutron shielding properties of newpolyurethane based composites loaded with B4C, BeO, WO3, ZnO, andGd2O3micro- and nanoparticles //Pol. J. Med. Phys. Eng.2019. V. 25. P. 211–219.
- Cataldo F., Prata M., Newcomposites for neutron radiation shielding //J. Radioanal. Nucl. Chem.2019. V. 320. P. 831–839.
- Jun J., Kim J., BaeY., Seo Y.S. Enhancement of dispersion and adhesion of B4Cparticles in epoxy resin using direct ultrasonic excitation //J. Nucl. Mater. 2011. V. 416. P. 293–297.
- Li Z., Xue X., Jiang T., Yang H., Zhou M. Study onthe properties of boron containing ores/epoxy composites for slow neutronshielding //Adv. Mater. Res. 2011. V. 201–203. P. 2767–2771.
- Lee M.K., Lee J.K., Kim J.W., Lee G.J. Properties ofB4C–PbO–Al(OH)3-epoxynanocomposite prepared by ultrasonic dispersion approach for high temperature neutronshields //J. Nucl. Mater. 2014. V. 445. P. 63–71.
- Stone M.B., Crow L., Fanelli V.R., Niedziela J.L. Characterization ofshielding materials used in neutron scattering instrumentation //Nucl. Instrum.Methods Phys. Res. A 2019. V. 946. P. 162708.
- Stegn E.V., Zuev K.V., Grachev A.V., Lalayan V.M., Patlazhan S.A., Shaulov A. Yu., Berlin A.A. Features of the meltflow of polyethylene and boron oxide oligomer blends //Polym.Sci. Ser. A. 2014. V. 56. P. 169–172.
- Ivanov S.M.,Kuznetsov S.A., Volkov A.E., Terekhin P.N., Dmitriev S.V., Tcherdyntsev V.V.,Gorshenkov M.V., Boykov A.A. Photons transport through ultrahigh molecular weightpolyethylene based composite containing tungsten and boron carbide fillers //J. Alloys Compd. 2014. V. 586. P. 455–458.
- Harrison C.,Weaver S., Bertelsen C., Burgett E., Hertel N., Grulke E. Polyethylene/boron nitride composites for space radiation shielding //J. Appl.Polym. Sci. 2008. V. 109. P. 2529–2538.
- Bewley D.K., MeuldersJ.-P., Page B.C. New neutron sources for radiotherapy //Phys.Med. Biol. 1984. V. 29. P. 341–349.
- Zhang Y., ChenF., Tang X., Huang H., Chen T., Sun X. Boracicpolyethylene/polyethylene wax blends and open-cell nickel foams as neutron-shielding composite //J. Reinf. Plast. Compos. 2018. V. 37. P. 181–190.
- Colin X., Monchy-Leroy C., Audouin L., Verdu J. Lifetime predictionof polyethylene in nuclear plants //Nucl. Instrum. Methods Phys.Res. B. 2007. V. 265. P. 251–255.
- Nambiar S., Yeow J.T.W.Polymer-composite materials for radiation protection //ACS Appl. Mater.Interfaces. 2012. V. 4. P. 5717–5726.
- Wundrich K.A, review ofradiation resistance for plastic and elastomeric materials //Radiat. Phys.Chem. 1985. V. 24. P. 503–510.
- Rennie A.R., EngberA., Eriksson O., Dalgliesh R.M. Understanding neutron absorption andscattering in a polymer composite material //Nuclear Inst. andMethods in Physics Research, A. 2020. V. 84. P. 164613.
- Leigh S.J., Bradley R.J., Purssell C.P., Billson D.R., Hutchins D.A. A simple, low-cost conductive composite materialfor 3D printing of electronic sensors //PLoS One. 2012.V. 7. P. e49365.
- Widmann T., Kreuzer L.P., Mangiapia G.,Haese M., Frielinghaus H., Müller-Buschbaum P. 3D printed spherical environmentalchamber for neutron reflectometry and grazing-incidence small-angle neutron scattering experiments //Rev. Sci. Instrum. 2020. V. 91. P. 113903.
- Somenkov V.A., Glazkov V.P., Em V.T., Gureev A.I., Murashev M.M., Sadykov R.A., Kravchuk L.V. On the complex radiation diagnostics facility DRAGON //J. Surf. Investig.: X-Ray, Synchrotron Neutron Tech. 2019. V.13. P. 870–876.
- Timoshenko M.V., Lisyanskaya M.V., Sychev M.M., Britov V.P. Influence of Reinforcing Fillers on the Mechanical Characteristicsof Thermoelastoplastic Elastomers Developed for 3D Printing //Glass Phys.Chem. 2024. V. 50. No 6. P. 695–704.
- Timoshenko M.V., Balabanov S.V., Sychov M.M Koshevaya K.S., Dolmatov V. Yu., Britov V.P. The Effect of the Introduction of DetonationNanodiamonds on the Physical and Mechanical Characteristics of Thermoplastic Elastomers //Glass Phys. Chem. 2023. V. 49. P. 314–318.
- Timoshenko M.V., Balabanov S.V., Sychov M.M. Influence of nanofiller distribution onthe physical and mechanical characteristics of thermoplastic elastomers //GlassPhys. Chem. 2023. V. 49. P. 546–553.
- Timoshenko M.V., Balabanov S.V., Sychev M.M., Nikiforov D.I. Application of Thermoplastic Elastomer for3D Printing by Fused Deposition Modeling(FDM) //Glass Phys. Chem. 2021. V. 47. P. 502–504.
补充文件
