Telomere length and telomerase activity as biomarkers for diagnostics and prognosis of pathological disorders
- Authors: Moskaleva E.Y.1, Glukhov A.I.2,3, Zhirnik A.S.1, Vysotskaya O.V.1, Vorobiova S.A.2
-
Affiliations:
- Kurchatov Complex of NBICS Nature-like Technologies, National Research Center “Kurchatov Institute”
- I. M. Sechenov First Moscow State Medical University (Sechenov University)
- Lomonosov Moscow State University
- Issue: Vol 90, No 6 (2025)
- Pages: 752 – 780
- Section: Articles
- URL: https://rjdentistry.com/0320-9725/article/view/688055
- DOI: https://doi.org/10.31857/S0320972525060053
- EDN: https://elibrary.ru/JCXNHO
- ID: 688055
Cite item
Abstract
Telomere biology research remains a hot topic. Analysis of several thousand clinical samples from healthy individuals performed in recent years has shown that the telomere length (TL) of peripheral blood leukocytes correlates with the TL of human internal organ cells and reflects their condition, decreases under the influence of damaging factors and can serve as an indicator of health status. A decrease in TL leads to proliferation arrest and is considered as an indicator of replicative aging of proliferating cells, and a decrease in TL of peripheral blood leukocytes is considered as an indicator of aging. Novel fundamental research data enabled to formulate the concepts about the role of the enzyme CST–Polymerase alpha/primase in the complementary C-strand synthesis after completion of the 3′G overhang synthesis by telomerase during telomere replication. The discovery of telomeric TERRA RNA and its role in the regulation of telomerase activity (TA) and alternative lengthening of telomeres, as well as the possibility of TERRA translation, provided evidence of the complex epigenetic regulation of TL maintenance. The published data analysis allows concluding that telomeres are dynamic structures and that TL undergoes significant changes under the influence of damaging factors and is determined not only by the chronological age, but by the total effect of exposure to all exogenous and endogenous damaging factors during the life. An inheritable decrease in TL due to mutations in the genes of proteins that determine the telomere structure and participate in the telomere replication, primarily the proteins of the shelterin complex, the CST complex and telomerase, has been found in a number of hereditary diseases – telomeropathies. Analysis of TL and TA is of great importance for the diagnosis of telomeropathies and may be useful in cancer diagnostics, and analysis of TL – for monitoring the health status, including exposure to ionizing radiation and space flight factors, together with the prediction of individual sensitivity to the action of damaging factors of different nature. The modern advanced genetic technologies for the analysis of TL and TA are available for use in clinical and epidemiological studies, are actively used in the telomeropathies diagnostics and astronauts’ health monitoring, and continue to improve.
Full Text

About the authors
E. Yu. Moskaleva
Kurchatov Complex of NBICS Nature-like Technologies, National Research Center “Kurchatov Institute”
Author for correspondence.
Email: Moskaleva_EY@nrcki.ru
Russian Federation, 123182 Moscow
A. I. Glukhov
I. M. Sechenov First Moscow State Medical University (Sechenov University); Lomonosov Moscow State University
Email: moskalevaey@mail.ru
Department of the Biological Chemistry, Faculty of Biology
Russian Federation, 119048 Moscow; 119991 MoscowA. S. Zhirnik
Kurchatov Complex of NBICS Nature-like Technologies, National Research Center “Kurchatov Institute”
Email: moskalevaey@mail.ru
Russian Federation, 123182 Moscow
O. V. Vysotskaya
Kurchatov Complex of NBICS Nature-like Technologies, National Research Center “Kurchatov Institute”
Email: moskalevaey@mail.ru
Russian Federation, 123182 Moscow
S. A. Vorobiova
I. M. Sechenov First Moscow State Medical University (Sechenov University)
Email: moskalevaey@mail.ru
Department of the Biological Chemistry
Russian Federation, 119048 MoscowReferences
- Оловников А. М. (1971) Принцип маргинотомии в матричном синтезе полинуклеотидов, ДАН СССР, 201, 1496-1499.
- Olovnikov, A. M. (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon, J. Theor. Biol., 41, 181-190, https://doi.org/10.1016/0022-5193(73)90198-7.
- Hayflick, L. (1965) The limited in vitro lifetime of human diploid cell strains, Exp. Cell Res., 37, 614-636, https://doi.org/10.1016/0014-4827(65)90211-9.
- Greider, C. W., and Blackburn, E. H. (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts, Cell, 43, 405-413, https://doi.org/10.1016/0092-8674(85)90170-9.
- Greider, C. W., and Blackburn, E. H. (1989) A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis, Nature, 337, 331-337, https://doi.org/10.1038/337331a0.
- Greider, C. W. (1998) Telomeres and senescence: the history, the experiment, the future, Curr. Biol., 8, R178-R181, https://doi.org/10.1016/s0960-9822(98)70105-8.
- Harley, C. B., Futcher, A. B., and Greider, C. W. (1990) Telomeres shorten during ageing of human fibroblasts, Nature, 345, 458-460, https://doi.org/10.1038/345458a0.
- Hastie, N. D., Dempster, M., Dunlop, M. G., Thompson, A. M., Green, D. K., and Allshire, R. C. (1990) Telomere reduction in human colorectal carcinoma and with ageing, Nature, 346, 866-868, https://doi.org/10.1038/ 346866a0.
- От редакции (2023) Биохимия, 88, 2037, https://doi.org/10.31857/S0320972523110015.
- Olovnikov, I. A. (2024) Telomeres in health and longevity: special issue in memory of Alexey Olovnikov, Biogerontology, 25, 191-193, https://doi.org/10.1007/s10522-023-10090-7.
- Griffith, J. D., Comeau, L., Rosenfield, S., Stansel, R. M., Bianchi, A., Moss, H., and de Lange, T. (1999) Mammalian telomeres end in a large duplex loop, Cell, 97, 503-514, https://doi.org/10.1016/s0092-8674(00)80760-6.
- Doksani, Y., and de Lange, T. (2014) The role of double-strand break repair pathways at functional and dysfunctional telomeres, Cold Spring Harb. Perspect. Biol., 6, a016576, https://doi.org/10.1101/cshperspect. a016576.
- Ruis, P., and Boulton, S. J. (2021) The end protection problem-an unexpected twist in the tail, Genes Dev., 35, 1-21, https://doi.org/10.1101/gad.344044.120.
- Yang, D. (2019) G-Quadruplex DNA and RNA, Methods Mol. Biol., 2035, 1-24, https://doi.org/10.1007/ 978-1-4939-9666-7_1.
- De Lange, T. (2005) Shelterin: the protein complex that shapes and safeguards human telomeres, Genes Dev., 19, 2100-2110, https://doi.org/10.1101/gad.1346005.
- O’Connor, M. S., Safari, A., Xin, H., Liu, D., and Songyang, Z. (2006) A critical role for TPP1 and TIN2 interaction in high-order telomeric complex assembly, Proc. Natl. Acad. Sci. USA, 103, 11874-11879, https://doi.org/10.1073/pnas.0605303103.
- De Lange, T. (2018) Shelterin-mediated telomere protection, Annu. Rev. Genet., 52, 223-247, https://doi.org/10.1146/annurev-genet-032918-021921.
- Lim, C. J., and Cech, T. R. (2021) Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin organization, Nat. Rev. Mol. Cell Biol., 22, 283-298, https://doi.org/10.1038/s41580-021-00328-y.
- Smith, E. M., Pendlebury, D. F., and Nandakumar, J. (2020) Structural biology of telomeres and telomerase, Cell. Mol. Life Sci., 77, 61-79, https://doi.org/10.1007/s00018-019-03369-x.
- Palm, W., and de Lange, T. (2008) How shelterin protects mammalian telomeres, Annu. Rev. Genet., 42, 301-334, https://doi.org/10.1146/annurev.genet.41.110306.130350.
- Wang, F., and Lei, M. (2011) Human telomere POT1–TPP1 complex and its role in telomerase activity regulation, Methods Mol. Biol., 735, 173-187, https://doi.org/10.1007/978-1-61779-092-8_17.
- Wang, F., Podell, E. R., Zaug, A. J., Yang, Y., Baciu, P., Cech, T. R., and Lei, M. (2007) The POT1–TPP1 telomere complex is a telomerase processivity factor, Nature, 445, 506-510, https://doi.org/10.1038/nature05454.
- Doksani, Y. (2019) The response to DNA damage at telomeric repeats and its consequences for telomere function, Genes (Basel), 10, 318, https://doi.org/10.3390/genes10040318.
- Yegorov, Y. E. (2023) Olovnikov, telomeres, and telomerase. Is it possible to prolong a healthy life? Biochemistry (Moscow), 88, 1704-1718, https://doi.org/10.1134/S0006297923110032.
- Martens, U. M., Chavez, E. A., Poon, S. S., Schmoor, C., and Lansdorp, P. M. (2000) Accumulation of short telomeres in human fibroblasts prior to replicative senescence, Exp. Cell Res., 256, 291-299, https://doi.org/10.1006/excr.2000.4823.
- Gaspar, T. B., Sa, A., Lopes, J. M., Sobrinho-Simoes, M., Soares, P., and Vinagre, J. (2018) Telomere maintenance mechanisms in cancer, Genes, 9, https://doi.org/10.3390/genes9050241.
- Campisi, J., and d’Adda di Fagagna, F. (2007) Cellular senescence: when bad things happen to good cells, Nat. Rev. Mol. Cell Biol., 8, 729-740, https://doi.org/10.1038/nrm2233.
- Fumagalli, M., Rossiello, F., Clerici, M., Barozzi, S., Cittaro, D., Kaplunov, J. M., Bucci, G., Dobreva, M., Matti, V., Beausejour, C. M., Herbig, U., Longhese, M. P., and d’Adda di Fagagna, F. (2012) Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation, Nat. Cell Biol., 14, 355-365, https://doi.org/10.1038/ncb2466.
- Slawinska, N., and Krupa, R. (2021) Molecular aspects of senescence and organismal ageing-DNA damage response, telomeres, inflammation and chromatin, Int. J. Mol. Sci., 22, https://doi.org/10.3390/ijms22020590.
- GTEx Consortium (2020) The GTEx Consortium atlas of genetic regulatory effects across human tissues, Science, 369, 1318-1330, https://doi.org/10.1126/science.aaz1776.
- Demanelis, K., Jasmine, F., Chen, L. S., Chernoff, M., Tong, L., Delgado, D., Zhang, C., Shinkle, J., Sabarinathan, M., Lin, H., Ramirez, E., Oliva, M., Kim-Hellmuth, S., Stranger, B. E., Lai, T. P., Aviv, A., Ardlie, K. G., Aguet, F., Ahsan, H., GTEx Consortium, et al. (2020) Determinants of telomere length across human tissues, Science, 369, https://doi.org/10.1126/science.aaz6876.
- Carver, A. J., Hing, B., Elser, B. A., Lussier, S. J., Yamanashi, T., Howard, M. A., 3rd, Kawasaki, H., Shinozaki, G., and Stevens, H. E. (2024) Correlation of telomere length in brain tissue with peripheral tissues in living human subjects, Front. Mol. Neurosci., 17, 1303974, https://doi.org/10.3389/fnmol.2024.1303974.
- Finnicum, C. T., Dolan, C. V., Willemsen, G., Weber, Z. M., Petersen, J. L., Beck, J. J., Codd, V., Boomsma, D. I., Davies, G. E., and Ehli, E. A. (2017) Relative telomere repeat mass in buccal and leukocyte-derived DNA, PLoS One, 12, e0170765, https://doi.org/10.1371/journal.pone.0170765.
- Frenck, R. W., Jr., Blackburn, E. H., and Shannon, K. M. (1998) The rate of telomere sequence loss in human leukocytes varies with age, Proc. Natl. Acad. Sci. USA, 95, 5607-5610, https://doi.org/10.1073/pnas.95.10.5607.
- Kagirova, Z. R., Demina, I. A., Blokhin, B. M., and Rumyantsev, A. G. (2017) Telomere length and children’s health [in Russian], Pediatric Hematol. Oncol. Immunopathol., 16, 107-112, https://doi.org/10.24287/1726-1708-2017-16-4-107-112.
- Takai, H., Aria, V., Borges, P., Yeeles, J. T. P., and de Lange, T. (2024) CST-polymerase alpha-primase solves a second telomere end-replication problem, Nature, 627, 664-670, https://doi.org/10.1038/s41586-024-07137-1.
- Zaug, A. J., Goodrich, K. J., Song, J. J., Sullivan, A. E., and Cech, T. R. (2022) Reconstitution of a telomeric replicon organized by CST, Nature, 608, 819-825, https://doi.org/10.1038/s41586-022-04930-8.
- Cesare, A. J., and Reddel, R. R. (2010) Alternative lengthening of telomeres: models, mechanisms and implications, Nat. Rev. Genet., 11, 319-330, https://doi.org/10.1038/nrg2763.
- Draskovic, I., and Londono Vallejo, A. (2013) Telomere recombination and alternative telomere lengthening mechanisms, Front. Biosci., 18, 1-20, https://doi.org/10.2741/4084.
- Hu, Y., Shi, G., Zhang, L., Li, F., Jiang, Y., Jiang, S., Ma, W., Zhao, Y., Songyang, Z., and Huang, J. (2016) Switch telomerase to ALT mechanism by inducing telomeric DNA damages and dysfunction of ATRX and DAXX, Sci. Rep., 6, 32280, https://doi.org/10.1038/srep32280.
- Feng, J., Funk, W. D., Wang, S. S., Weinrich, S. L., Avilion, A. A., Chiu, C. P., Adams, R. R., Chang, E., Allsopp, R. C., Yu, J., and et al. (1995) The RNA component of human telomerase, Science, 269, 1236-1241, https://doi.org/10.1126/science.7544491.
- Roake, C. M., and Artandi, S. E. (2020) Regulation of human telomerase in homeostasis and disease, Nat. Rev. Mol. Cell Biol., 21, 384-397, https://doi.org/10.1038/s41580-020-0234-z.
- Rubtsova, M. P., Vasilkova, D. P., Malyavko, A. N., Naraikina, Y. V., Zvereva, M. I., and Dontsova, O. A. (2012) Telomere lengthening and other functions of telomerase, Acta Naturae, 4, 44-61, https://doi.org/10.32607/ 20758251-2012-4-2-44-61.
- Wang, F., Stewart, J. A., Kasbek, C., Zhao, Y., Wright, W. E., and Price, C. M. (2012) Human CST has independent functions during telomere duplex replication and C-strand fill-in, Cell Rep., 2, 1096-1103, https://doi.org/10.1016/ j.celrep.2012.10.007.
- He, Q., and Lim, C. J. (2023) Models for human telomere C-strand fill-in by CST-Polalpha-primase, Trends Biochem. Sci., 48, 860-872, https://doi.org/10.1016/j.tibs.2023.07.008.
- Cai, S. W., and de Lange, T. (2023) CST-Polalpha/Primase: the second telomere maintenance machine, Genes Dev, 37, 555-569, https://doi.org/10.1101/gad.350479.123.
- Zaug, A. J., Lim, C. J., Olson, C. L., Carilli, M. T., Goodrich, K. J., Wuttke, D. S., and Cech, T. R. (2021) CST does not evict elongating telomerase but prevents initiation by ssDNA binding, Nucleic Acids Res., 49, 11653-11665, https://doi.org/10.1093/nar/gkab942.
- Beattie, T. L., Zhou, W., Robinson, M. O., and Harrington, L. (2001) Functional multimerization of the human telomerase reverse transcriptase, Mol. Cell. Biol., 21, 6151-6160, https://doi.org/10.1128/MCB.21.18.6151-6160.2001.
- Harrington, L., McPhail, T., Mar, V., Zhou, W., Oulton, R., Bass, M. B., Arruda, I., and Robinson, M. O. (1997) A mammalian telomerase-associated protein, Science, 275, 973-977, https://doi.org/10.1126/science.275.5302.973.
- Cong, Y. S., Wright, W. E., and Shay, J. W. (2002) Human telomerase and its regulation, Microbiol. Mol. Biol. Rev., 66, 407-425, https://doi.org/10.1128/MMBR.66.3.407-425.2002.
- Wick, M., Zubov, D., and Hagen, G. (1999) Genomic organization and promoter characterization of the gene encoding the human telomerase reverse transcriptase (hTERT), Gene, 232, 97-106, https://doi.org/10.1016/ s0378-1119(99)00108-0.
- Skvortzov, D. A., Rubzova, M. P., Zvereva, M. E., Kiselev, F. L., and Donzova, O. A. (2009) The regulation of telomerase in oncogenesis, Acta Naturae, 1, 51-67, https://doi.org/10.32607/20758251-2009-1-1-51-67.
- Nalobin, D. S., Galiakberova, A. A., Alipkina, S. I., and Glukhov, A. I. (2018) Regulation of telomerase activity, Biol. Bull. Rev., 8, 142-154, https://doi.org/10.1134/S2079086418020068.
- Teichroeb, J. H., Kim, J., and Betts, D. H. (2016) The role of telomeres and telomerase reverse transcriptase isoforms in pluripotency induction and maintenance, RNA Biol., 13, 707-719, https://doi.org/10.1080/15476286. 2015.1134413.
- Surovtseva, Y. V., Churikov, D., Boltz, K. A., Song, X., Lamb, J. C., Warrington, R., Leehy, K., Heacock, M., Price, C. M., and Shippen, D. E. (2009) Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes, Mol. Cell, 36, 207-218, https://doi.org/10.1016/j.molcel. 2009.09.017.
- Chen, L. Y., Redon, S., and Lingner, J. (2012) The human CST complex is a terminator of telomerase activity, Nature, 488, 540-544, https://doi.org/10.1038/nature11269.
- Feng, X., Hsu, S. J., Kasbek, C., Chaiken, M., and Price, C. M. (2017) CTC1-mediated C-strand fill-in is an essential step in telomere length maintenance, Nucleic Acids Res., 45, 4281-4293, https://doi.org/10.1093/nar/gkx125.
- Azzalin, C. M., Reichenbach, P., Khoriauli, L., Giulotto, E., and Lingner, J. (2007) Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends, Science, 318, 798-801, https://doi.org/10.1126/science.1147182.
- Lalonde, M., and Chartrand, P. (2020) TERRA, a multifaceted regulator of telomerase activity at telomeres, J. Mol. Biol., 432, 4232-4243, https://doi.org/10.1016/j.jmb.2020.02.004.
- Cusanelli, E., and Chartrand, P. (2015) Telomeric repeat-containing RNA TERRA: a noncoding RNA connecting telomere biology to genome integrity, Front. Genet., 6, 143, https://doi.org/10.3389/fgene.2015.00143.
- Redon, S., Reichenbach, P., and Lingner, J. (2010) The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase, Nucleic Acids Res., 38, 5797-5806, https://doi.org/10.1093/nar/gkq296.
- Venteicher, A. S., Abreu, E. B., Meng, Z., McCann, K. E., Terns, R. M., Veenstra, T. D., Terns, M. P., and Artandi, S. E. (2009) A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis, Science, 323, 644-648, https://doi.org/10.1126/science.1165357.
- Deng, Z., Norseen, J., Wiedmer, A., Riethman, H., and Lieberman, P. M. (2009) TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres, Mol. Cell, 35, 403-413, https://doi.org/10.1016/ j.molcel.2009.06.025.
- Xu, Y., and Komiyama, M. (2023) G-Quadruplexes in Human Telomere: Structures, Properties, and Applications, Molecules, 29, https://doi.org/10.3390/molecules29010174.
- Wang, H., Nora, G. J., Ghodke, H., and Opresko, P. L. (2011) Single molecule studies of physiologically relevant telomeric tails reveal POT1 mechanism for promoting G-quadruplex unfolding, J. Biol. Chem., 286, 7479-7489, https://doi.org/10.1074/jbc.M110.205641.
- Cuesta, J., Read, M. A., and Neidle, S. (2003) The design of G-quadruplex ligands as telomerase inhibitors, Mini Rev. Med. Chem., 3, 11-21, https://doi.org/10.2174/1389557033405502.
- Sadhukhan, R., Chowdhury, P., Ghosh, S., and Ghosh, U. (2018) Expression of telomere-associated proteins is interdependent to stabilize native telomere structure and telomere dysfunction by G-quadruplex ligand causes TERRA upregulation, Cell Biochem. Biophys., 76, 311-319, https://doi.org/10.1007/s12013-017-0835-0.
- Fernandes, R. V., Feretzaki, M., and Lingner, J. (2021) The makings of TERRA R-loops at chromosome ends, Cell Cycle, 20, 1745-1759, https://doi.org/10.1080/15384101.2021.1962638.
- Graf, M., Bonetti, D., Lockhart, A., Serhal, K., Kellner, V., Maicher, A., Jolivet, P., Teixeira, M. T., and Luke, B. (2017) Telomere length determines TERRA and R-loop regulation through the cell cycle, Cell, 170, 72-85.e14, https://doi.org/10.1016/j.cell.2017.06.006.
- Brickner, J. R., Garzon, J. L., and Cimprich, K. A. (2022) Walking a tightrope: the complex balancing act of R-loops in genome stability, Mol. Cell, 82, 2267-2297, https://doi.org/10.1016/j.molcel.2022.04.014.
- Arora, R., and Azzalin, C. M. (2015) Telomere elongation chooses TERRA ALTernatives, RNA Biol., 12, 938-941, https://doi.org/10.1080/15476286.2015.1065374.
- Al-Turki, T. M., and Griffith, J. D. (2023) Mammalian telomeric RNA (TERRA) can be translated to produce valine-arginine and glycine-leucine dipeptide repeat proteins, Proc. Natl. Acad. Sci. USA, 120, e2221529120, https://doi.org/10.1073/pnas.2221529120.
- Rosen, J., Jakobs, P., Ale-Agha, N., Altschmied, J., and Haendeler, J. (2020) Non-canonical functions of telomerase reverse transcriptase – impact on redox homeostasis, Redox Biol., 34, 101543, https://doi.org/10.1016/ j.redox.2020.101543.
- Segal-Bendirdjian, E., and Geli, V. (2019) Non-canonical roles of telomerase: unraveling the Imbroglio, Front. Cell Dev. Biol., 7, 332, https://doi.org/10.3389/fcell.2019.00332.
- Marinaccio, J., Micheli, E., Udroiu, I., Di Nottia, M., Carrozzo, R., Baranzini, N., Grimaldi, A., Leone, S., Moreno, S., Muzzi, M., and Sgura, A. (2023) TERT extra-telomeric roles: antioxidant activity and mitochondrial protection, Int. J. Mol. Sci., 24, 4450, https://doi.org/10.3390/ijms24054450.
- Gazzaniga, F. S., and Blackburn, E. H. (2014) An antiapoptotic role for telomerase RNA in human immune cells independent of telomere integrity or telomerase enzymatic activity, Blood, 124, 3675-3684, https://doi.org/10.1182/blood-2014-06-582254.
- Rubtsova, M., and Dontsova, O. (2020) Human telomerase RNA: telomerase component or more? Biomolecules, 10, 873, https://doi.org/10.3390/biom10060873.
- Rubtsova, M., and Dontsova, O. (2022) How structural features define biogenesis and function of human telomerase RNA primary transcript, Biomedicines, 10, 1650, https://doi.org/10.3390/biomedicines10071650.
- Rubtsova, M., Naraykina, Y., Vasilkova, D., Meerson, M., Zvereva, M., Prassolov, V., Lazarev, V., Manuvera, V., Kovalchuk, S., Anikanov, N., Butenko, I., Pobeguts, O., Govorun, V., and Dontsova, O. (2018) Protein encoded in human telomerase RNA is involved in cell protective pathways, Nucleic Acids Res., 46, 8966-8977, https://doi.org/10.1093/nar/gky705.
- Artandi, S. E., and DePinho, R. A. (2010) Telomeres and telomerase in cancer, Carcinogenesis, 31, 9-18, https://doi.org/10.1093/carcin/bgp268.
- Durant, S. T. (2012) Telomerase-independent paths to immortality in predictable cancer subtypes, J. Cancer, 3, 67-82, https://doi.org/10.7150/jca.3965.
- Tsatsakis, A., Oikonomopoulou, T., Nikolouzakis, T. K., Vakonaki, E., Tzatzarakis, M., Flamourakis, M., Renieri, E., Fragkiadaki, P., Iliaki, E., Bachlitzanaki, M., Karzi, V., Katsikantami, I., Kakridonis, F., Hatzidaki, E., Tolia, M., Svistunov, A. A., Spandidos, D. A., Nikitovic, D., Tsiaoussis, J., and Berdiaki, A. (2023) Role of telomere length in human carcinogenesis (review), Int. J. Oncol., 63, 78, https://doi.org/10.3892/ijo.2023.5526.
- Fang, T., Zhang, Z., Ren, K., and Zou, L. (2024) Genetically determined telomere length as a risk factor for hematological malignancies: evidence from Mendelian randomization analysis, Aging (Albany NY), 16, 4684-4698, https://doi.org/10.18632/aging.205625.
- Fernandes, S. G., Dsouza, R., Pandya, G., Kirtonia, A., Tergaonkar, V., Lee, S. Y., Garg, M., and Khattar, E. (2020) Role of telomeres and telomeric proteins in human malignancies and their therapeutic potential, Cancers (Basel), 12, 1901, https://doi.org/10.3390/cancers12071901.
- Glybochko, P. V., Alyaev, J. G., Potoldykova, N. V., Polyakovsky, K. A., Vinarov, A. Z., Glukhov, A. I., and Gordeev, S. A. (2016) The role of telomerase activity in non-invasive diagnostics of bladder cancer [in Russian], Urologiia, 4, 76-81.
- Glukhov, A. I., Polotdykova, N. V., Gordeev, S. A., Vinarov, A. Z., Polyakovsky, K. A., Rapoport, L. M., Tsarichenko, D. G., Enikeev, D. V., and Glybochko, P. V. (2018) Current trends in bladder cancer diagnosis [in Russian], Urologiia, 5, 100-105, https://doi.org/10.18565/urology.2018.5.100-105.
- Glukhov, A., Potoldykova, N., Taratkin, M., Gordeev, S., Polyakovsky, K., Laukhtina, E., Moschini, M., Abufaraj, M., Shariat, S. F., Sekacheva, M., Enikeev, D., and Glybochko, P. (2021) Detection of urothelial bladder cancer based on urine and tissue telomerase activity measured by novel RT-TRAP-2PCR method, J. Clin. Med., 10, 1055, https://doi.org/10.3390/jcm10051055.
- Casadio, V., and Bravaccini, S. (2021) Telomerase activity analysis in urine sediment for bladder cancer, Methods Mol. Biol., 2292, 133-141, https://doi.org/10.1007/978-1-0716-1354-2_12.
- Powter, B., Jeffreys, S. A., Sareen, H., Cooper, A., Brungs, D., Po, J., Roberts, T., Koh, E. S., Scott, K. F., Sajinovic, M., Vessey, J. Y., de Souza, P., and Becker, T. M. (2021) Human TERT promoter mutations as a prognostic biomarker in glioma, J. Cancer Res. Clin. Oncol., 147, 1007-1017, https://doi.org/10.1007/s00432-021-03536-3.
- Shou, S., Maolan, A., Zhang, D., Jiang, X., Liu, F., Li, Y., Zhang, X., Geer, E., Pu, Z., Hua, B., Guo, Q., Zhang, X., and Pang, B. (2025) Telomeres, telomerase, and cancer: mechanisms, biomarkers, and therapeutics, Exp. Hematol. Oncol., 14, 8, https://doi.org/10.1186/s40164-025-00597-9.
- Penninckx, S., Pariset, E., Cekanaviciute, E., and Costes, S. V. (2021) Quantification of radiation-induced DNA double strand break repair foci to evaluate and predict biological responses to ionizing radiation, NAR Cancer, 3, zcab046, https://doi.org/10.1093/narcan/zcab046.
- Nickoloff, J. A., Sharma, N., Allen, C. P., Taylor, L., Allen, S. J., Jaiswal, A. S., and Hromas, R. (2023) Roles of homologous recombination in response to ionizing radiation-induced DNA damage, Int. J. Radiat. Biol., 99, 903-914, https://doi.org/10.1080/09553002.2021.1956001.
- Mladenov, E., Mladenova, V., Stuschke, M., and Iliakis, G. (2023) New facets of DNA double strand break repair: radiation dose as key determinant of HR versus c-NHEJ Engagement, Int. J. Mol. Sci., 24, 14956, https://doi.org/10.3390/ijms241914956.
- Iliakis, G., Murmann, T., and Soni, A. (2015) Alternative end-joining repair pathways are the ultimate backup for abrogated classical non-homologous end-joining and homologous recombination repair: implications for the formation of chromosome translocations, Mutat. Res. Genet. Toxicol. Environ. Mutagen., 793, 166-175, https://doi.org/10.1016/j.mrgentox.2015.07.001.
- Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S., and Bonner, W. M. (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139, J. Biol. Chem., 273, 5858-5868, https://doi.org/10.1074/jbc.273.10.5858.
- Karlseder, J., Hoke, K., Mirzoeva, O. K., Bakkenist, C., Kastan, M. B., Petrini, J. H., and de Lange, T. (2004) The telomeric protein TRF2 binds the ATM kinase and can inhibit the ATM-dependent DNA damage response, PLoS Biol., 2, E240, https://doi.org/10.1371/journal.pbio.0020240.
- Imran, S. A. M., Yazid, M. D., Cui, W., and Lokanathan, Y. (2021) The intra- and extra-telomeric role of TRF2 in the DNA damage response, Int. J. Mol. Sci., 22, https://doi.org/10.3390/ijms22189900.
- Denchi, E. L., and de Lange, T. (2007) Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1, Nature, 448, 1068-1071, https://doi.org/10.1038/nature06065.
- Hewitt, G., Jurk, D., Marques, F. D., Correia-Melo, C., Hardy, T., Gackowska, A., Anderson, R., Taschuk, M., Mann, J., and Passos, J. F. (2012) Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence, Nat. Commun., 3, 708, https://doi.org/10.1038/ncomms1708.
- Thapar, R. (2018) Regulation of DNA double-strand break repair by non-coding RNAs, Molecules, 23, 2789, https://doi.org/10.3390/molecules23112789.
- Porro, A., Feuerhahn, S., and Lingner, J. (2014) TERRA-reinforced association of LSD1 with MRE11 promotes processing of uncapped telomeres, Cell Rep., 6, 765-776, https://doi.org/10.1016/j.celrep.2014.01.022.
- Shim, G., Ricoul, M., Hempel, W. M., Azzam, E. I., and Sabatier, L. (2014) Crosstalk between telomere maintenance and radiation effects: a key player in the process of radiation-induced carcinogenesis, Mutat. Res. Rev. Mutat. Res., 760, 1-17, https://doi.org/10.1016/j.mrrev.2014.01.001.
- Azzam, E. I., Jay-Gerin, J. P., and Pain, D. (2012) Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury, Cancer Lett., 327, 48-60, https://doi.org/10.1016/j.canlet.2011.12.012.
- Kumar, K., Fornace, A. J., Jr., and Suman, S. (2024) 8-OxodG: a potential biomarker for chronic oxidative stress induced by high-LET radiation, DNA (Basel), 4, 221-238, https://doi.org/10.3390/dna4030015.
- Santos, R. X., Correia, S. C., Zhu, X., Smith, M. A., Moreira, P. I., Castellani, R. J., Nunomura, A., and Perry, G. (2013) Mitochondrial DNA oxidative damage and repair in aging and Alzheimer’s disease, Antioxid Redox Signal., 18, 2444-2457, https://doi.org/10.1089/ars.2012.5039.
- Shokolenko, I. N., Wilson, G. L., and Alexeyev, M. F. (2014) Aging: a mitochondrial DNA perspective, critical analysis and an update, World J. Exp. Med., 4, 46-57, https://doi.org/10.5493/wjem.v4.i4.46.
- Richter, C., Park, J. W., and Ames, B. N. (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive, Proc. Natl. Acad. Sci. USA, 85, 6465-6467, https://doi.org/10.1073/pnas.85.17.6465.
- Suman, S., Rodriguez, O. C., Winters, T. A., Fornace, A. J., Jr., Albanese, C., and Datta, K. (2013) Therapeutic and space radiation exposure of mouse brain causes impaired DNA repair response and premature senescence by chronic oxidant production, Aging (Albany NY), 5, 607-622, https://doi.org/10.18632/ aging.100587.
- Tseng, B. P., Giedzinski, E., Izadi, A., Suarez, T., Lan, M. L., Tran, K. K., Acharya, M. M., Nelson, G. A., Raber, J., Parihar, V. K., and Limoli, C. L. (2014) Functional consequences of radiation-induced oxidative stress in cultured neural stem cells and the brain exposed to charged particle irradiation, Antioxid Redox Signal., 20, 1410-1422, https://doi.org/10.1089/ars.2012.5134.
- Barnes, R. P., de Rosa, M., Thosar, S. A., Detwiler, A. C., Roginskaya, V., Van Houten, B., Bruchez, M. P., Stewart-Ornstein, J., and Opresko, P. L. (2022) Telomeric 8-oxo-guanine drives rapid premature senescence in the absence of telomere shortening, Nat. Struct. Mol. Biol., 29, 639-652, https://doi.org/10.1038/s41594-022-00790-y.
- Fouquerel, E., Barnes, R. P., Uttam, S., Watkins, S. C., Bruchez, M. P., and Opresko, P. L. (2019) Targeted and persistent 8-oxoguanine base damage at telomeres promotes telomere Loss and crisis, Mol. Cell., 75, 117-130.e116, https://doi.org/10.1016/j.molcel.2019.04.024.
- Wang, L., Lu, Z., Zhao, J., Schank, M., Cao, D., Dang, X., Nguyen, L. N., Nguyen, L. N. T., Khanal, S., Zhang, J., Wu, X. Y., El Gazzar, M., Ning, S., Moorman, J. P., and Yao, Z. Q. (2021) Selective oxidative stress induces dual damage to telomeres and mitochondria in human T cells, Aging Cell, 20, e13513, https://doi.org/10.1111/ acel.13513.
- Honig, L. S., Kang, M. S., Cheng, R., Eckfeldt, J. H., Thyagarajan, B., Leiendecker-Foster, C., Province, M. A., Sanders, J. L., Perls, T., Christensen, K., Lee, J. H., Mayeux, R., and Schupf, N. (2015) Heritability of telomere length in a study of long-lived families, Neurobiol. Aging, 36, 2785-2790, https://doi.org/10.1016/j.neurobiolaging. 2015.06.017.
- Krivoshchapova, Y. V., and Vozilova, A. V. (2022) The study of the telomere length of the chromosomes in T-lymphocytes of the exposed individuals [in Russian], J. Radiat. Safety Issues, 107, 71-79.
- Smirnova, T. Y., Runov, A. L., Vonsky, M. S., Spivak, D. L., Zakharchuk, A. G., Mikhelson, V. M., and Spivak, I. M. (2012) Telomere length in a population of long-lived people of the northwestern region of Russia, Cell Tissue Biol., 6, 465-471, https://doi.org/10.1134/S1990519X12050112.
- Li, P., Hou, M., Lou, F., Bjorkholm, M., and Xu, D. (2012) Telomere dysfunction induced by chemotherapeutic agents and radiation in normal human cells, Int. J. Biochem. Cell Biol., 44, 1531-1540, https://doi.org/10.1016/ j.biocel.2012.06.020.
- Luxton, J. J., McKenna, M. J., Lewis, A. M., Taylor, L. E., Jhavar, S. G., Swanson, G. P., and Bailey, S. M. (2021) Telomere length dynamics and chromosomal instability for predicting individual radiosensitivity and risk via machine learning, J. Personal. Med., 11, 188, https://doi.org/10.3390/jpm11030188.
- Sishc, B. J., Nelson, C. B., McKenna, M. J., Battaglia, C. L., Herndon, A., Idate, R., Liber, H. L., and Bailey, S. M. (2015) Telomeres and telomerase in the radiation response: implications for instability, reprograming, and carcinogenesis, Front. Oncol., 5, 257, https://doi.org/10.3389/fonc.2015.00257.
- Millet, P., Granotier, C., Etienne, O., and Boussin, F. D. (2013) Radiation-induced upregulation of telomerase activity escapes PI3-kinase inhibition in two malignant glioma cell lines, Int. J. Oncol., 43, 375-382, https://doi.org/10.3892/ijo.2013.1970.
- Wang, X., Liu, Y., Chow, L. S., Wong, S. C., Tsao, G. S., Kwong, D. L., Sham, J. S., and Nicholls, J. M. (2000) Regulation of telomerase activity by gamma-radiation in nasopharyngeal carcinoma cells, Anticancer Res., 20, 433-437.
- Hyeon Joo, O., Hande, M. P., Lansdorp, P. M., and Natarajan, A. T. (1998) Induction of telomerase activity and chromosome aberrations in human tumour cell lines following X-irradiation, Mutat. Res., 401, 121-131, https://doi.org/10.1016/s0027-5107(97)00321-7.
- Ram, R., Uziel, O., Eldan, O., Fenig, E., Beery, E., Lichtenberg, S., Nordenberg, Y., and Lahav, M. (2009) Ionizing radiation up-regulates telomerase activity in cancer cell lines by post-translational mechanism via ras/phosphatidylinositol 3-kinase/Akt pathway, Clin. Cancer Res., 15, 914-923, https://doi.org/10.1158/1078-0432. CCR-08-0792.
- Vysotskaya, O. V., Glukhov, A. I., Semochkina, Y. P., Gordeev, S. A., and Moskaleva, E. Y. (2020) Telomerase activity, mTert gene expression and the telomere length in mouse mesenchymal stem cells in the late period after γ- and γ,n-irradiation and in tumors developed from these cells [in Russian], Biomed. Khim., 66, 265-273, https://doi.org/10.18097/PBMC20206603265.
- Moskaleva, E. Y., Vysotskaya, O. V., Zhorova, E. S., Shaposhnikova, D. A., Saprykin, V. P., Cheshigin, I. V., Smirnova, O. D., and Zhirnik, A. S. (2023) Late effects of γ, n-irradiation of mice: shortening of telomeres and tumors development [in Russian], Med. Radiol. Radiat. Safety, 68, 11-18, https://doi.org/10.33266/ 1024-6177-2023-68-5-11-18.
- Moskaleva, E. Y., Romantsova, A. N., Semochkina, Y. P., Rodina, A. D., Cheshigin, I. V., Degtyarev, A., and Zhirnik, A. (2021) Analysis of the appearance of micronuclei in the erythrocytes and activity of bone marrow cells proliferation after the prolonged low dose Fast neutrons irradiation of mice [in Russian], Med. Radiol. Radiat. Safety, 66, 26-33, https://doi.org/10.12737/1024-6177-2021-66-6-26-33.
- Berardinelli, F., Nieri, D., Sgura, A., Tanzarella, C., and Antoccia, A. (2012) Telomere loss, not average telomere length, confers radiosensitivity to TK6-irradiated cells, Mutat. Res., 740, 13-20, https://doi.org/10.1016/ j.mrfmmm.2012.11.004.
- Wong, K. K., Chang, S., Weiler, S. R., Ganesan, S., Chaudhuri, J., Zhu, C., Artandi, S. E., Rudolph, K. L., Gottlieb, G. J., Chin, L., Alt, F. W., and DePinho, R. A. (2000) Telomere dysfunction impairs DNA repair and enhances sensitivity to ionizing radiation, Nat. Genet., 26, 85-88, https://doi.org/10.1038/79232.
- Ayouaz, A., Raynaud, C., Heride, C., Revaud, D., and Sabatier, L. (2008) Telomeres: hallmarks of radiosensitivity, Biochimie, 90, 60-72, https://doi.org/10.1016/j.biochi.2007.09.011.
- Lustig, A., Shterev, I., Geyer, S., Shi, A., Hu, Y., Morishita, Y., Nagamura, H., Sasaki, K., Maki, M., Hayashi, I., Furukawa, K., Yoshida, K., Kajimura, J., Kyoizumi, S., Kusunoki, Y., Ohishi, W., Nakachi, K., Weng, N. P., and Hayashi, T. (2016) Long term effects of radiation exposure on telomere lengths of leukocytes and its associated biomarkers among atomic-bomb survivors, Oncotarget, 7, 38988-38998, https://doi.org/10.18632/oncotarget.8801.
- Yoshida, K., Misumi, M., Kubo, Y., Yamaoka, M., Kyoizumi, S., Ohishi, W., Hayashi, T., and Kusunoki, Y. (2016) Long-term effects of radiation exposure and metabolic status on telomere length of peripheral blood T cells in atomic bomb survivors, Radiat. Res., 186, 367-376, https://doi.org/10.1667/ RR14389.1.
- Scherthan, H., Sotnik, N., Peper, M., Schrock, G., Azizova, T., and Abend, M. (2016) Telomere length in aged mayak PA nuclear workers chronically exposed to internal alpha and external gamma radiation, Radiat. Res., 185, 658-667, https://doi.org/10.1667/RR14271.1.
- Trickovic, J. F., Sobot, A. V., Joksic, I., and Joksic, G. (2022) Telomere fragility in radiology workers occupationally exposed to low doses of ionising radiation, Arh. Hig. Rada Toksikol., 73, 23-30, https://doi.org/10.2478/ aiht-2022-73-3609.
- Xiao, C. Y., Zhou, F. X., Liu, S. Q., Xie, C. H., Dai, J., and Zhou, Y. F. (2005) Correlations of telomere length and telomerase activity to radiosensitivity of human laryngeal squamous carcinoma cells [in Chinese], Chin. J. Cancer, 24, 653-656.
- Zhong, Y. H., Liao, Z. K., Zhou, F. X., Xie, C. H., Xiao, C. Y., Pan, D. F., Luo, Z. G., Liu, S. Q., and Zhou, Y. F. (2008) Telomere length inversely correlates with radiosensitivity in human carcinoma cells with the same tissue background, Biochem. Biophys. Res. Commun., 367, 84-89, https://doi.org/10.1016/j.bbrc.2007.12.078.
- Goytisolo, F. A., Samper, E., Martin-Caballero, J., Finnon, P., Herrera, E., Flores, J. M., Bouffler, S. D., and Blasco, M. A. (2000) Short telomeres result in organismal hypersensitivity to ionizing radiation in mammals, J. Exp. Med., 192, 1625-1636, https://doi.org/10.1084/jem.192.11.1625.
- Zongaro, S., Verri, A., Giulotto, E., and Mondello, C. (2008) Telomere length and radiosensitivity in human fibroblast clones immortalized by ectopic telomerase expression, Oncol. Rep., 19, 1605-1609, https://doi.org/10.3892/or.19.6.1605.
- Drissi, R., Wu, J., Hu, Y., Bockhold, C., and Dome, J. S. (2011) Telomere shortening alters the kinetics of the DNA damage response after ionizing radiation in human cells, Cancer Prev. Res. (Phila), 4, 1973-1981, https://doi.org/10.1158/1940-6207.CAPR-11-0069.
- Zhou, F. X., Xiong, J., Luo, Z. G., Dai, J., Yu, H. J., Liao, Z. K., Lei, H., Xie, C. H., and Zhou, Y. F. (2010) cDNA expression analysis of a human radiosensitive-radioresistant cell line model identifies telomere function as a hallmark of radioresistance, Radiat. Res., 174, 550-557, https://doi.org/10.1667/RR1657.1.
- Ferrandon, S., Saultier, P., Carras, J., Battiston-Montagne, P., Alphonse, G., Beuve, M., Malleval, C., Honnorat, J., Slatter, T., Hung, N., Royds, J., Rodriguez-Lafrasse, C., and Poncet, D. (2013) Telomere profiling: toward glioblastoma personalized medicine, Mol. Neurobiol., 47, 64-76, https://doi.org/10.1007/s12035-012-8363-9.
- Sharma, G. G., Hall, E. J., Dhar, S., Gupta, A., Rao, P. H., and Pandita, T. K. (2003) Telomere stability correlates with longevity of human beings exposed to ionizing radiations, Oncol. Rep., 10, 1733-1736, https://doi.org/10.3892/or.10.6.1733.
- Bernal, A., and Tusell, L. (2018) Telomeres: implications for cancer development, Int. J. Mol. Sci., 19, 294, https://doi.org/10.3390/ijms19010294.
- Mirjolet, C., Boidot, R., Saliques, S., Ghiringhelli, F., Maingon, P., and Crehange, G. (2015) The role of telomeres in predicting individual radiosensitivity of patients with cancer in the era of personalized radiotherapy, Cancer Treat. Rev., 41, 354-360, https://doi.org/10.1016/j.ctrv.2015.02.005.
- Afshinnekoo, E., Scott, R. T., MacKay, M. J., Pariset, E., Cekanaviciute, E., Barker, R., Gilroy, S., Hassane, D., Smith, S. M., Zwart, S. R., Nelman-Gonzalez, M., Crucian, B. E., Ponomarev, S. A., Orlov, O. I., Shiba, D., Muratani, M., Yamamoto, M., Richards, S. E., Vaishampayan, P. A., Meydan, C., et al. (2020) Fundamental biological features of spaceflight: advancing the field to enable deep-space exploration, Cell, 183, 1162-1184, https://doi.org/ 10.1016/j.cell.2020.10.050.
- Garrett-Bakelman, F. E., Darshi, M., Green, S. J., Gur, R. C., Lin, L., Macias, B. R., McKenna, M. J., Meydan, C., Mishra, T., Nasrini, J., Piening, B. D., Rizzardi, L. F., Sharma, K., Siamwala, J. H., Taylor, L., Vitaterna, M. H., Afkarian, M., Afshinnekoo, E., Ahadi, S., Ambati, A., et al. (2019) The NASA twins study: a multidimensional analysis of a year-long human spaceflight, Science, 364, eaau8650, https://doi.org/10.1126/science. aau8650.
- Luxton, J. J., McKenna, M. J., Taylor, L. E., George, K. A., Zwart, S. R., Crucian, B. E., Drel, V. R., Garrett-Bakelman, F. E., Mackay, M. J., Butler, D., Foox, J., Grigorev, K., Bezdan, D., Meydan, C., Smith, S. M., Sharma, K., Mason, C. E., and Bailey, S. M. (2020) Temporal telomere and DNA damage responses in the space radiation environment, Cell Rep., 33, 108435, https://doi.org/10.1016/j.celrep.2020.108435.
- Welsh, J., and Bevelacqua, J. J. K., M. Mortazavi, S. A. R., and Mortazavi, S. M. J. (2019) Is telomere length a biomarker of adaptive response in space? Curious findings from NASA and residents of high background radiation areas, J. Biomed. Phys. Eng., 9, 381-388, https://doi.org/10.31661/jbpe.v9i3Jun.1151.
- Garcia-Medina, J. S., Sienkiewicz, K., Narayanan, S. A., Overbey, E. G., Grigorev, K., Ryon, K. A., Burke, M., Proszynski, J., Tierney, B., Schmidt, C. M., Mencia-Trinchant, N., Klotz, R., Ortiz, V., Foox, J., Chin, C., Najjar, D., Matei, I., Chan, I., Cruchaga, C., Kleinman, A., et al. (2024) Genome and clonal hematopoiesis stability contrasts with immune, cfDNA, mitochondrial, and telomere length changes during short duration spaceflight, Precis. Clin. Med., 7, pbae007, https://doi.org/10.1093/pcmedi/pbae007.
- Rolles, B., Tometten, M., Meyer, R., Kirschner, M., Beier, F., and Brummendorf, T. H. (2024) Inherited telomere biology disorders: pathophysiology, clinical presentation, diagnostics, and treatment, Transfus. Med. Hemother., 51, 292-309, https://doi.org/10.1159/000540109.
- Savage, S. A. (2022) Dyskeratosis congenita and telomere biology disorders, Hematology Am. Soc. Hematol. Educ. Program, 2022, 637-648, https://doi.org/10.1182/hematology.2022000394.
- Heiss, N. S., Knight, S. W., Vulliamy, T. J., Klauck, S. M., Wiemann, S., Mason, P. J., Poustka, A., and Dokal, I. (1998) X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions, Nat. Genet., 19, 32-38, https://doi.org/10.1038/ng0598-32.
- Calado, R. T., and Young, N. S. (2009) Telomere diseases, N. Engl. J. Med., 361, 2353-2365, https://doi.org/ 10.1056/NEJMra0903373.
- Tummala, H., Walne, A., Buccafusca, R., Alnajar, J., Szabo, A., Robinson, P., McConkie-Rosell, A., Wilson, M., Crowley, S., Kinsler, V., Ewins, A. M., Madapura, P. M., Patel, M., Pontikos, N., Codd, V., Vulliamy, T., and Dokal, I. (2022) Germline thymidylate synthase deficiency impacts nucleotide metabolism and causes dyskeratosis congenita, Am. J. Hum. Genet., 109, 1472-1483, https://doi.org/10.1016/j.ajhg.2022.06.014.
- Tummala, H., Walne, A., and Dokal, I. (2022) The biology and management of dyskeratosis congenita and related disorders of telomeres, Exp. Rev. Hematol., 15, 685-696, https://doi.org/10.1080/17474086.2022. 2108784.
- Niewisch, M. R., Beier, F., and Savage, S. A. (2023) Clinical manifestations of telomere biology disorders in adults, Hematol. Am. Soc. Hematol. Educ. Program, 2023, 563-572, https://doi.org/10.1182/hematology.2023000490.
- Tummala, H., Walne, A. J., Badat, M., Patel, M., Walne, A. M., Alnajar, J., Chow, C. C., Albursan, I., Frost, J. M., Ballard, D., Killick, S., Szitanyi, P., Kelly, A. M., Raghavan, M., Powell, C., Raymakers, R., Todd, T., Mantadakis, E., Polychronopoulou, S., Pontikos, N., et al. (2024) The evolving genetic landscape of telomere biology disorder dyskeratosis congenita, EMBO Mol. Med., 16, 2560-2582, https://doi.org/10.1038/s44321-024-00118-x.
- Luchkin, A. V., Mikhailova, E. A., Galtseva, I. V., Fidarova, Z. T., Abramova, A. V., Davydova, Yu. O., Kapranov, N. M., Nikiforova, K. A., Kulikov, S. M., and Parovichnikova, E. N. (2023) Telomere length of various blood and bone marrow cells in patients with aplastic anemia [in Russian], Oncohematology, 18, 57-64, https://doi.org/10.17650/1818-8346-2023-18-3-57-64.
- Suliman, M. E., Ansari, M. G. A., Rayis, M. A., Hamza, M. A., Saeed, A. A., Mohammed, A. K., and Al-Daghri, N. M. (2022) Telomere length and telomere repeat-binding protein in children with sickle cell disease, Pediatr. Res., 91, 539-544, https://doi.org/10.1038/s41390-021-01495-6.
- Roka, K., Solomou, E. E., and Kattamis, A. (2023) Telomere biology: from disorders to hematological diseases, Front. Oncol., 13, 1167848, https://doi.org/10.3389/fonc.2023.1167848.
- Skvortsov, D. A., Zvereva, M. E., Shpanchenko, O. V., and Dontsova, O. A. (2011) Assays for detection of telomerase activity, Acta naturae, 3, 48-68.
- Wang, R., Li, J., Jin, R., Ye, Q., Cheng, L., and Liu, R. (2021) Nonradioactive direct telomerase activity detection using biotin-labeled primers, J. Clin. Lab. Anal., 35, e23800, https://doi.org/10.1002/jcla.23800.
- Zhang, X., Lou, X., and Xia, F. (2017) Advances in the detection of telomerase activity using isothermal amplification, Theranostics, 7, 1847-1862, https://doi.org/10.7150/thno.18930.
- Kim, N. W., Piatyszek, M. A., Prowse, K. R., Harley, C. B., West, M. D., Ho, P. L., Coviello, G. M., Wright, W. E., Weinrich, S. L., and Shay, J. W. (1994) Specific association of human telomerase activity with immortal cells and cancer, Science, 266, 2011-2015, https://doi.org/10.1126/science.7605428.
- Skvortsov, D. A., Zvereva, M. E., Rubtsova, M. P., Pavlova, L. S., Petrenko, A. A., Kiselev, F. L., and Dontsova O. A. (2010) Optimized detection method of telomerase activity in cancer diagnostics, Moscow Univ. Chem. Bull., 65, 165-169, https://doi.org/10.3103/S0027131410030119.
- Demina, I. A., Semchenkova, A. A., Kagirova, Z. R., and Popov, A. M. (2018) Flow cytometric measurement of absolute telomere length, Pediatr. Hematol. Oncol. Immunopathol., 17, 66-72, https://doi.org/10.24287/ 1726-1708-2018-17-4-66-72.
- Gutierrez-Rodrigues, F., Santana-Lemos, B. A., Scheucher, P. S., Alves-Paiva, R. M., and Calado, R. T. (2014) Direct comparison of flow-FISH and qPCR as diagnostic tests for telomere length measurement in humans, PLoS One, 9, e113747, https://doi.org/10.1371/journal.pone.0113747.
- Zheng, Y. L., Wu, X., Williams, M., Verhulst, S., Lin, J., Takahashi, Y., Ma, J. X., and Wang, Y. (2024) High-throughput single telomere analysis using DNA microarray and fluorescent in situ hybridization, Nucleic Acids Res., 52, e96, https://doi.org/10.1093/nar/gkae812.
Supplementary files
