Progress in crispr/Cas13-mediated suppression of influenza A and SARS-CoV-2 virus infection in in vitro and in vivo models

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The worldwide number of deaths from complications caused by severe influenza and COVID-19 is about 1 million cases annually. The development of effective antiviral therapy strategies for the disease treatment is one of the most important tasks. The use of the CRISPR/Cas13 system, which specifically degrades viral RNA and significantly reduces the titer of the virus, can be a solution of this problem. Despite the recent discovery, Cas13 nucleases have already shown their high efficiency in suppressing viral transcripts in cell cultures. Recent advances in mRNA technology and improvements in non-viral delivery systems have made it possible to effectively use CRISPR/Cas13 in animal models as well. In this review, we have analyzed the experimental in vitro and in vivo studies on the use of CRISPR/Cas13 systems as antiviral agent in cell cultures and animals and discussed the main directions for improving the CRISPR/Cas13 system. These data allow us to understand the prospects and limitations of further use of CRISPR/Cas13 in the treatment of viral diseases.

Full Text

Restricted Access

About the authors

A. A. Kazakova

Sirius University of Science and Technology

Email: reshetnikov.vv@talantiuspeh.ru
Russian Federation, 354340 Federal Territory “Sirius”

E. I. Leonova

Saint-Petersburg State University

Email: e.leonova@spbu.ru
Russian Federation, 199034 Saint-Peterburg

J. V. Sopova

Saint-Petersburg State University

Email: e.leonova@spbu.ru
Russian Federation, 199034 Saint-Peterburg

A. V. Chirinskaite

Saint-Petersburg State University

Email: e.leonova@spbu.ru
Russian Federation, 199034 Saint-Peterburg

E. S. Minskaya

Sirius University of Science and Technology

Email: reshetnikov.vv@talantiuspeh.ru
Russian Federation, 354340 Federal Territory “Sirius”

I. S. Kukushkin

Sirius University of Science and Technology

Email: reshetnikov.vv@talantiuspeh.ru
Russian Federation, 354340 Federal Territory “Sirius”

R. A. Ivanov

Sirius University of Science and Technology

Email: reshetnikov.vv@talantiuspeh.ru
Russian Federation, 354340 Federal Territory “Sirius”

V. V. Reshetnikov

Sirius University of Science and Technology; Institute of Cytology and Genetics, Siberian Branchn Academy of Sciences

Author for correspondence.
Email: reshetnikov.vv@talantiuspeh.ru
Russian Federation, 354340 Federal Territory “Sirius”; 630090 Novosibirsk

References

  1. Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., and Zhang, F. (2013) Genome engineering using the CRISPR-Cas9 system, Nat. Protoc., 8, 2281-2308, https://doi.org/10.1038/nprot.2013.143.
  2. Charpentier, E., Richter, H., van der Oost, J., and White, M. F. (2015) Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity, FEMS Microbiol. Rev., 39, 428-441, https://doi.org/10.1093/femsre/fuv023.
  3. Abudayyeh, O. O., Gootenberg, J. S., Konermann, S., Joung, J., Slaymaker, I. M., Cox, D. B., Shmakov, S., Makarova, K. S., Semenova, E., Minakhin, L., Severinov, K., Regev, A., Lander, E. S., Koonin, E. V., and Zhang, F. (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector, Science, 353, aaf5573, https://doi.org/10.1126/science.aaf5573.
  4. Shmakov, S., Smargon, A., Scott, D., Cox, D., Pyzocha, N., Yan, W., Abudayyeh, O. O., Gootenberg, J. S., Makarova, K. S., Wolf, Y. I., Severinov, K., Zhang, F., and Koonin, E. V. (2017) Diversity and evolution of class 2 CRISPR-Cas systems, Nat. Rev. Microbiol., 15, 169-182, https://doi.org/10.1038/nrmicro.2016.184.
  5. Xue, Y., Chen, Z., Zhang, W., and Zhang, J. (2022) Engineering CRISPR/Cas13 system against RNA viruses: from diagnostics to therapeutics, Bioengineering, 9, 291, https://doi.org/10.3390/bioengineering9070291.
  6. Zhao, X., Liu, L., Lang, J., Cheng, K., Wang, Y., Li, X., Shi, J., Wang, Y., and Nie, G. (2018) A CRISPR-Cas13a system for efficient and specific therapeutic targeting of mutant KRAS for pancreatic cancer treatment, Cancer Lett., 431, 171-181, https://doi.org/10.1016/j.canlet.2018.05.042.
  7. Freije, C. A., Myhrvold, C., Boehm, C. K., Lin, A. E., Welch, N. L., Carter, A., Metsky, H. C., Luo, C. Y., Abudayyeh, O. O., Gootenberg, J. S., Yozwiak, N. L., Zhang, F., and Sabeti, P. C. (2019) Programmable inhibition and detection of RNA viruses using Cas13, Mol. Cell, 76, 826-837.e11, https://doi.org/10.1016/j.molcel.2019.09.013.
  8. Kellner, M. J., Koob, J. G., Gootenberg, J. S., Abudayyeh, O. O., and Zhang, F. (2019) SHERLOCK: nucleic acid detection with CRISPR nucleases, Nat. Protoc., 14, 2986-3012, https://doi.org/10.1038/s41596-019-0210-2.
  9. Li, H., Wang, S., Dong, X., Li, Q., Li, M., Li, J., Guo, Y., Jin, X., Zhou, Y., Song, H., and Kou, Z. (2020) CRISPR-Cas13a cleavage of dengue virus NS3 gene efficiently inhibits viral replication, Mol. Ther. Nucleic Acids, 19, 1460-1469, https://doi.org/10.1016/j.omtn.2020.01.028.
  10. Abbott, T. R., Dhamdhere, G., Liu, Y., Lin, X., Goudy, L., Zeng, L., Chemparathy, A., Chmura, S., Heaton, N. S., Debs, R., Pande, T., Endy, D., La Russa, M. F., Lewis, D. B., and Qi, L. S. (2020) Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza, Cell, 181, 865-876.e12, https://doi.org/10.1016/j.cell. 2020.04.020.
  11. Zeng, L., Liu, Y., Nguyenla, X. H., Abbott, T. R., Han, M., Zhu, Y., Chemparathy, A., Lin, X., Chen, X., Wang, H., Rane, D. A., Spatz, J. M., Jain, S., Rustagi, A., Pinsky, B., Zepeda, A. E., Kadina, A. P., Walker, J. A., 3rd, Holden, K., Temperton, N., Cochran, J. R., Barron, A. E., Connolly, M. D., Blish, C. A., Lewis, D. B., Stanley, S. A., La Russa, M. F., and Qi, L. S. (2022) Broad-spectrum CRISPR-mediated inhibition of SARS-CoV-2 variants and endemic coronaviruses in vitro, Nat. Commun., 13, 2766, https://doi.org/10.1038/s41467-022-30546-7.
  12. Nguyen, H., Wilson, H., Jayakumar, S., Kulkarni, V., and Kulkarni, S. (2021) Efficient inhibition of HIV using CRISPR/Cas13d nuclease system, Viruses, 13, 1850, https://doi.org/10.3390/v13091850.
  13. Chaves, L. C. S., Orr-Burks, N., Vanover, D., Mosur, V. V., Hosking, S. R., Kumar E K, P., Jeong, H., Jung, Y., Assumpção, J. A. F., Peck, H. E., Nelson, S. L., Burke, K. N., Garrison, M. A., Arthur, R. A., Claussen, H., Heaton, N. S., Lafontaine, E. R., Hogan, R. J., Zurla, C., and Santangelo, P. J. (2024) mRNA-encoded Cas13 treatment of influenza via site-specific degradation of genomic RNA, PLoS Pathog., 20, e1012345, https://doi.org/10.1371/ journal.ppat.1012345.
  14. Méndez-Mancilla, A., Wessels, H. H., Legut, M., Kadina, A., Mabuchi, M., Walker, J., Robb, G. B., Holden, K., and Sanjana, N. E. (2022) Chemically modified guide RNAs enhance CRISPR-Cas13 knockdown in human cells, Cell Chem. Biol., 29, 321-327.e4, https://doi.org/10.1016/j.chembiol.2021.
  15. Gorbalenya, A. E., Enjuanes, L., Ziebuhr, J., and Snijder, E. J. (2006) Nidovirales: evolving the largest RNA virus genome, Virus Res., 117, 17-37, https://doi.org/10.1016/j.virusres.2006.01.017.
  16. Imbert, I., Guillemot, J. C., Bourhis, J. M., Bussetta, C., Coutard, B., Egloff, M. P., Ferron, F., Gorbalenya, A. E., and Canard, B. (2006) A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus, EMBO J., 25, 4933-4942, https://doi.org/10.1038/sj.emboj.7601368.
  17. Seybert, A., Hegyi, A., Siddell, S. G., and Ziebuhr, J. (2000) The human coronavirus 229E superfamily 1 helicase has RNA and DNA duplex-unwinding activities with 5′-to-3′ polarity, RNA, 6, 1056-1068, https://doi.org/10.1017/s1355838200000728.
  18. Ivanov, K. A., Thiel, V., Dobbe, J. C., van der Meer, Y., Snijder, E. J., and Ziebuhr, J. (2004) Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase, J. Virol., 78, 5619-5632, https://doi.org/10.1128/JVI.78.11.5619-5632.2004.
  19. Minskaia, E., Hertzig, T., Gorbalenya, A. E., Campanacci, V., Cambillau, C., Canard, B., and Ziebuhr, J. (2006) Discovery of an RNA virus 3′→5′ exoribonuclease that is critically involved in coronavirus RNA synthesis, Proc. Natl. Acad. Sci. USA, 103, 5108-5113, https://doi.org/10.1073/pnas.0508200103.
  20. Ivanov, K. A., Hertzig, T., Rozanov, M., Bayer, S., Thiel, V., Gorbalenya, A. E., and Ziebuhr, J. (2004) Major genetic marker of nidoviruses encodes a replicative endoribonuclease, Proc. Natl. Acad. Sci. USA, 101, 12694-12699, https://doi.org/10.1073/pnas.0403127101.
  21. Benoni, R., Krafcikova, P., Baranowski, M. R., Kowalska, J., Boura, E., and Cahová, H. (2021) Substrate specificity of SARS-CoV-2 Nsp10-Nsp16 methyltransferase, Viruses, 13, 1722, https://doi.org/10.3390/v13091722.
  22. Bhatt, P. R., Scaiola, A., Loughran, G., Leibundgut, M., Kratzel, A., Meurs, R., Dreos, R., O’Connor, K. M., McMillan, A., Bode, J. W., Thiel, V., Gatfield, D., Atkins, J. F., and Ban, N. (2021) Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome, Science, 372, 1306-1313, https://doi.org/10.1126/science.abf3546.
  23. Brierley, I., Digard, P., and Inglis, S. C. (1989) Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot, Cell, 57, 537-547, https://doi.org/10.1016/0092-8674(89)90124-4.
  24. Finkel, Y., Mizrahi, O., Nachshon, A., Weingarten-Gabbay, S., Morgenstern, D., Yahalom-Ronen, Y., Tamir, H., Achdout, H., Stein, D., Israeli, O., Beth-Din, A., Melamed, S., Weiss, S., Israely, T., Paran, N., Schwartz, M., and Stern-Ginossar, N. (2021) The coding capacity of SARS-CoV-2, Nature, 589, 125-130, https://doi.org/10.1038/ s41586-020-2739-1.
  25. Wang, D., Jiang, A., Feng, J., Li, G., Guo, D., Sajid, M., Wu, K., Zhang, Q., Ponty, Y., Will, S., Liu, F., Yu, X., Li, S., Liu, Q., Yang, X. L., Guo, M., Li, X., Chen, M., Shi, Z. L., Lan, K., Chen, Y., and Zhou, Y. (2021) The SARS-CoV-2 subgenome landscape and its novel regulatory features, Mol. Cell, 81, 2135-2147.e5, https://doi.org/10.1016/ j.molcel.2021.02.036.
  26. Firth A. E. (2020) A putative new SARS-CoV protein, 3c, encoded in an ORF overlapping ORF3a, J. Gen. Virol., 101, 1085-1089, https://doi.org/10.1099/jgv.0.001469.
  27. Schaecher, S. R., Mackenzie, J. M., and Pekosz, A. (2007) The ORF7b protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is expressed in virus-infected cells and incorporated into SARS-CoV particles, J. Virol., 81, 718-731, https://doi.org/10.1128/JVI.01691-06.
  28. Eisfeld, A. J., Neumann, G., and Kawaoka, Y. (2015) At the centre: influenza A virus ribonucleoproteins, Nat. Rev. Microbiol., 13, 28-41, https://doi.org/10.1038/nrmicro3367.
  29. Fodor, E., and Te Velthuis, A. J. W. (2020) Structure and function of the influenza virus transcription and replication machinery, Cold Spring Harb. Perspect. Med., 10, a038398, https://doi.org/10.1101/ cshperspect.a038398.
  30. Lamb, R. A., Lai, C. J., and Choppin, P. W. (1981) Sequences of mRNAs derived from genome RNA segment 7 of influenza virus: colinear and interrupted mRNAs code for overlapping proteins, Proc. Natl. Acad. Sci. USA, 78, 4170-4174, https://doi.org/10.1073/pnas.78.7.4170.
  31. Dauber, B., Heins, G., and Wolff, T. (2004) The influenza B virus nonstructural NS1 protein is essential for efficient viral growth and antagonizes beta interferon induction, J. Virol., 78, 1865-1872, https://doi.org/10.1128/jvi.78.4.1865-1872.2004.
  32. Lamb, R. A., Choppin, P. W., Chanock, R. M., and Lai, C. J. (1980) Mapping of the two overlapping genes for polypeptides NS1 and NS2 on RNA segment 8 of influenza virus genome, Proc. Natl. Acad. Sci. USA, 77, 1857-1861, https://doi.org/10.1073/pnas.77.4.1857.
  33. Te Velthuis, A. J., and Fodor, E. (2016) Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis, Nat. Rev. Microbiol., 14, 479-493, https://doi.org/10.1038/nrmicro.2016.87.
  34. Marsh, G. A., Rabadán, R., Levine, A. J., and Palese, P. (2008) Highly conserved regions of influenza a virus polymerase gene segments are critical for efficient viral RNA packaging, J. Virol., 82, 2295-2304, https://doi.org/10.1128/JVI.02267-07.
  35. Bouvier, N. M., and Palese, P. (2008) The biology of influenza viruses, Vaccine, 2, D49-D53, https://doi.org/10.1016/ j.vaccine.2008.07.039.
  36. Makarova, K. S., Wolf, Y. I., Iranzo, J., Shmakov, S. A., Alkhnbashi, O. S., Brouns, S. J. J., Charpentier, E., Cheng, D., Haft, D. H., Horvath, P., Moineau, S., Mojica, F. J. M., Scott, D., Shah, S. A., Siksnys, V., Terns, M. P., Venclovas, Č., White, M. F., Yakunin, A. F., Yan, W., Zhang, F., Garrett, R. A., Backofen, R., van der Oost, J., Barrangou, R. and Koonin, E. V. (2020) Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants, Nat. Rev. Microbiol., 18, 67-83, https://doi.org/10.1038/s41579-019-0299-x.
  37. Xu, C., Zhou, Y., Xiao, Q., He, B., Geng, G., Wang, Z., Cao, B., Dong, X., Bai, W., Wang, Y., Wang, X., Zhou, D., Yuan, T., Huo, X., Lai, J., and Yang, H. (2021) Programmable RNA editing with compact CRISPR-Cas13 systems from uncultivated microbes, Nat. Methods, 18, 499-506, https://doi.org/10.1038/s41592-021-01124-4.
  38. Kannan, S., Altae-Tran, H., Jin, X., Madigan, V. J., Oshiro, R., Makarova, K. S., Koonin, E. V., and Zhang, F. (2022) Compact RNA editors with small Cas13 proteins, Nat. Biotechnol., 40, 194-197, https://doi.org/10.1038/ s41587-021-01030-2.
  39. Yoon, P. H., Zhang, Z., Loi, K. J., Adler, B. A., Lahiri, A., Vohra, K., Shi, H., Rabelo, D. B., Trinidad, M., Boger, R. S., Al-Shimary, M. J., and Doudna, J. A. (2024) Structure-guided discovery of ancestral CRISPR-Cas13 ribonucleases, Science, 385, 538-543, https://doi.org/10.1126/science.adq0553.
  40. Hu, Y., Chen, Y., Xu, J., Wang, X., Luo, S., Mao, B., Zhou, Q., and Li, W. (2022) Metagenomic discovery of novel CRISPR-Cas13 systems, Cell Discov., 8, 107, https://doi.org/10.1038/s41421-022-00464-5.
  41. Abudayyeh, O. O., Gootenberg, J. S., Essletzbichler, P., Han, S., Joung, J., Belanto, J. J., Verdine, V., Cox, D. B. T., Kellner, M. J., Regev, A., Lander, E. S., Voytas, D. F., Ting, A. Y., and Zhang, F. (2017) RNA targeting with CRISPR-Cas13, Nature, 550, 280-284, https://doi.org/10.1038/nature24049.
  42. Yan, W. X., Chong, S., Zhang, H., Makarova, K. S., Koonin, E. V., Cheng, D. R., and Scott, D. A. (2018) Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein, Mol. Cell, 70, 327-339.e5, https://doi.org/10.1016/j.molcel.2018.02.028.
  43. O’Connell M. R. (2019) Molecular mechanisms of RNA targeting by Cas13-containing type VI CRISPR-Cas systems, J. Mol. Biol., 431, 66-87, https://doi.org/10.1016/j.jmb.2018.06.029.
  44. Meeske, A. J., Nakandakari-Higa, S., and Marraffini, L. A. (2019) Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage, Nature, 570, 241-245, https://doi.org/10.1038/s41586-019-1257-5.
  45. Mayes, C. M., and Santarpia, J. L. (2023) Pan-coronavirus CRISPR-CasRx effector system significantly reduces viable titer in HCoV-OC43, HCoV-229E, and SARS-CoV-2, CRISPR J., 6, 359-368, https://doi.org/10.1089/crispr. 2022.0095.
  46. Andersson, K., Azatyan, A., Ekenberg, M., Güçlüler, G., Sardon Puig, L., Puumalainen, M., Pramer, T., Monteil, V. M., and Mirazimi, A. (2024) A CRISPR-Cas13b system degrades SARS-CoV and SARS-CoV-2 RNA in vitro, Viruses, 16, 1539, https://doi.org/10.3390/v16101539.
  47. Liu, Z., Gao, X., Kan, C., Li, L., Zhang, Y., Gao, Y., Zhang, S., Zhou, L., Zhao, H., Li, M., Zhang, Z., and Sun, Y. (2023) CRISPR-Cas13d effectively targets SARS-CoV-2 variants, including Delta and Omicron, and inhibits viral infection, MedComm, 4, e208, https://doi.org/10.1002/mco2.208.
  48. Wang, L., Zhou, J., Wang, Q., Wang, Y., and Kang, C. (2021) Rapid design and development of CRISPR-Cas13a targeting SARS-CoV-2 spike protein, Theranostics, 11, 649-664, https://doi.org/10.7150/thno.51479.
  49. Fareh, M., Zhao, W., Hu, W., Casan, J. M. L., Kumar, A., Symons, J., Zerbato, J. M., Fong, D., Voskoboinik, I., Ekert, P. G., Rudraraju, R., Purcell, D. F. J., Lewin, S. R., and Trapani, J. A. (2021) Reprogrammed CRISPR-Cas13b suppresses SARS-CoV-2 replication and circumvents its mutational escape through mismatch tolerance, Nat. Commun., 12, 4270, https://doi.org/10.1038/s41467-021-24577-9.
  50. Mayes, C. M., and Santarpia, J. (2022) Evaluating the impact of gRNA SNPs in CasRx activity for reducing viral RNA in HCoV-OC43, Cells, 11, 1859, https://doi.org/10.3390/cells11121859.
  51. Hillen, H. S., Kokic, G., Farnung, L., Dienemann, C., Tegunov, D., and Cramer, P. (2020) Structure of replicating SARS-CoV-2 polymerase, Nature, 584, 154-156, https://doi.org/10.1038/s41586-020-2368-8.
  52. Hussein, M., Andrade Dos Ramos, Z., Vink, M. A., Kroon, P., Yu, Z., Enjuanes, L., Zuñiga, S., Berkhout, B., and Herrera-Carrillo, E. (2023) Efficient CRISPR-Cas13d-based antiviral strategy to combat SARS-CoV-2, Viruses, 15, 686, https://doi.org/10.3390/v15030686.
  53. Blanchard, E. L., Vanover, D., Bawage, S. S., Tiwari, P. M., Rotolo, L., Beyersdorf, J., Peck, H. E., Bruno, N. C., Hincapie, R., Michel, F., Murray, J., Sadhwani, H., Vanderheyden, B., Finn, M. G., Brinton, M. A., Lafontaine, E. R., Hogan, R. J., Zurla, C., and Santangelo, P. J. (2021) Treatment of influenza and SARS-CoV-2 infections via mRNA-encoded Cas13a in rodents, Nat. Biotechnol., 39, 717-726, https://doi.org/10.1038/s41587-021-00822-w.
  54. Cui, Z., Zeng, C., Huang, F., Yuan, F., Yan, J., Zhao, Y., Zhou, Y., Hankey, W., Jin, V. X., Huang, J., Staats, H. F., Everitt, J. I., Sempowski, G. D., Wang, H., Dong, Y., Liu, S. L., and Wang, Q. (2022) Cas13d knockdown of lung protease Ctsl prevents and treats SARS-CoV-2 infection, Nat. Chem. Biol., 18, 1056-1064, https://doi.org/10.1038/s41589-022-01094-4.
  55. Yu, D., Han, H. J., Yu, J., Kim, J., Lee, G. H., Yang, J. H., Song, B. M., Tark, D., Choi, B. S., Kang, S. M., and Heo, W. D. (2023) Pseudoknot-targeting Cas13b combats SARS-CoV-2 infection by suppressing viral replication, Mol. Ther., 31, 1675-1687, https://doi.org/10.1016/j.ymthe.2023.03.018.
  56. Ou, X., Liu, Y., Lei, X., Li, P., Mi, D., Ren, L., Guo, L., Guo, R., Chen, T., Hu, J., Xiang, Z., Mu, Z., Chen, X., Chen, J., Hu, K., Jin, Q., Wang, J., and Qian, Z. (2020) Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV, Nat. Commun., 11, 1620, https://doi.org/10.1038/s41467-020-15562-9.
  57. Zhou, Y., Vedantham, P., Lu, K., Agudelo, J., Carrion, R., Jr, Nunneley, J. W., Barnard, D., Pöhlmann, S., McKerrow, J. H., Renslo, A. R., and Simmons, G. (2015) Protease inhibitors targeting coronavirus and filovirus entry, Antiviral Res., 116, 76-84, https://doi.org/10.1016/j.antiviral.2015.01.011.
  58. Simmons, G., Gosalia, D. N., Rennekamp, A. J., Reeves, J. D., Diamond, S. L., and Bates, P. (2005) Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry, Proc. Natl. Acad. Sci. USA, 102, 11876-11881, https://doi.org/10.1073/pnas.0505577102.
  59. Zhao, M. M., Yang, W. L., Yang, F. Y., Zhang, L., Huang, W. J., Hou, W., Fan, C. F., Jin, R. H., Feng, Y. M., Wang, Y. C., and Yang, J. K. (2021) Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development, Signal Transduct. Target. Ther., 6, 134, https://doi.org/ 10.1038/s41392-021-00558-8.
  60. Pateev, I., Seregina, K., Ivanov, R., and Reshetnikov, V. (2023) Biodistribution of RNA vaccines and of their products: evidence from human and animal studies, Biomedicines, 12, 59, https://doi.org/10.3390/ biomedicines12010059.
  61. Vasileva, O., Zaborova, O., Shmykov, B., Ivanov, R., and Reshetnikov, V. (2024) Composition of lipid nanoparticles for targeted delivery: application to mRNA therapeutics, Front. Pharmacol., 15, 1466337, https://doi.org/10.3389/fphar.2024.1466337.
  62. Challagulla, A., Schat, K. A., and Doran, T. J. (2021) In vitro inhibition of influenza virus using CRISPR/Cas13a in chicken cells, Methods Protoc., 4, 40, https://doi.org/10.3390/mps4020040.
  63. Tang, X. E., Tan, S. X., Hoon, S., and Yeo, G. W. (2022) Pre-existing adaptive immunity to the RNA-editing enzyme Cas13d in humans, Nat. Med., 28, 1372-1376, https://doi.org/10.1038/s41591-022-01848-6.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structural and non-structural proteins encoded in the SARS-CoV genome. Non-structural proteins nsp (1–16) play important roles in viral replication and are encoded in ORF1ab. Polyproteins PP1a and PP1ab are cleaved by viral proteases PLpro (papain-like protease) and 3CLpro (3C-like major protease) to active viral proteins. Structural and accessory proteins are encoded in the 3′-terminal part of the genome

Download (1MB)
3. Fig. 2. Schematic representation of the influenza A virus genome. a – Replication of influenza virus and other RNA viruses with (−) RNA genome. The ribonucleic acid complex (RNP), consisting of (−) genomic RNA in a complex with NP, cannot be translated and produce viral proteins. The viral polymerase RdRp, interacting with the RNP, first transcribes (+) mRNA, from which the viral proteins necessary for viral replication are translated, which then participate in the replication of new genomic (−) RNA. b – 8 RNA segments encode viral proteins. Cas13 targets are highlighted in red

Download (809KB)
4. Fig. 3. Diversity of Cas13 enzymes. a – Discovered and characterized enzymes of the Cas13 family with the degree of phylogenetic relationship (based on the materials of the following articles: [37–39]). b – Enzymes of the Cas13 family used for inactivation of viruses in cell cultures and in vivo (based on the materials of the following articles: [3, 37, 38, 41, 42])

Download (2MB)

Copyright (c) 2025 Russian Academy of Sciences