Designing a thermostable mini-intein for intein-mediated purification of recombinant proteins and peptides

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This paper reports design of a thermostable temperature-activated mini-intein based on the full-length intein DnaE1 from Thermus thermophilus HB27 (TthDnaE1). We performed rational design of three mini-inteins TthDnaE1 Δ272, Δ280 and Δ287 through deletion mutations in the full-length intein sequence. Two mini-inteins (Δ272 and Δ280) were capable of efficient protein splicing at temperatures above 50°C. The most active mini-intein with the Δ280 deletion was chosen as the basis for further design of a self-cleaving carrier of affinity tags through single-point mutagenesis. We performed the C1A, D405G and C1A/D405G mutations, which were proposed to eliminate the intein’s capability of N-terminal extein cleavage and extein ligation. As a result, the mini-intein Δ280 with double mutation C1A/D405G displayed the highest efficiency of C-terminal extein cleavage at its temperature optimum around 60°C. Thus, we constructed thermostable temperature-activated mini-inteins capable of efficient protein splicing or cleavage of C-terminal extein. The engineered TthDnaE1 Δ280 C1A/D405G mini-intein can serve as basis for the development of new expression system for intein-mediated production of pharmaceutical recombinant proteins and peptides.

Full Text

Restricted Access

About the authors

A. A. Karanov

Institute of Bioorganic Chemistry, Russian Academy of Sciences; Lomonosov Moscow State University

Author for correspondence.
Email: andrey-karanov2000@mail.ru

Faculty of Bioengineering and Bioinformatics

Russian Federation, 117997 Moscow; 119234 Moscow

E. A. Zayats

Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: refolding@mail.ru
Russian Federation, 117997 Moscow

M. A. Kostromina

Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: refolding@mail.ru
Russian Federation, 117997 Moscow

Yu. A. Abramchik

Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: refolding@mail.ru
Russian Federation, 117997 Moscow

A. R. Sharafutdinova

Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: refolding@mail.ru
Russian Federation, 117997 Moscow

M. S. Surkova

Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: refolding@mail.ru
Russian Federation, 117997 Moscow

A. A. Zamyatnin

Lomonosov Moscow State University

Email: refolding@mail.ru

Faculty of Bioengineering and Bioinformatics

Russian Federation, 119234 Moscow

R. S. Esipov

Institute of Bioorganic Chemistry, Russian Academy of Sciences; Lomonosov Moscow State University

Email: refolding@mail.ru

Faculty of Bioengineering and Bioinformatics

Russian Federation, 117997 Moscow; 119234 Moscow

References

  1. Ben-Bassat, A. (1991) Purification and Analysis of Recombinant Proteins (Seetharam, R., and Sharma, S. K., eds), Marcel Dekker, N.Y., pp. 147-151.
  2. Enfors, S. O. (1992) Control of in vivo proteolysis in the production of recombinant proteins, Trends Biotechnol, 10, 310-315, https://doi.org/10.1016/0167-7799(92)90256-u.
  3. Mahmoodi, S., Pourhassan-Moghaddam, M., Wood, D. W., Majdi, H., and Zarghami, N. (2019) Current affinity approaches for purification of recombinant proteins, Cogent Biol., 5, 1665406, https://doi.org/10.1080/ 23312025.2019.1665406.
  4. Eskandari, A., Leow, T. C., Rahman, M. B. A., and Oslan, S. N. (2024) Utilization and prospect of purification technologies in natural proteins, peptides and recombinant proteins, J. Proteins Proteom., 15, 233-257, https://doi.org/10.1007/s42485-024-00139-7.
  5. Esipov, R. S., Stepanenko, V. N., Chupova, L. A., Boyarskikh, U. A., Filipenko, M. L., and Miroshnikov, A. I. (2008) Production of recombinant human epidermal growth factor using Ssp dnaB mini-intein system, Protein Expr. Purif., 61, 1-6, https://doi.org/10.1016/j.pep.2008.05.009.
  6. Volkmann, G., and Mootz, H. D. (2013) Recent progress in intein research: from mechanism to directed evolution and applications, Cell Mol. Life Sci., 70, 1185-1206, https://doi.org/10.1007/s00018-012-1120-4.
  7. Yuan, H., Prabhala, S. V., Coolbaugh, M. J., Stimple, S. D., and Wood, D. W. (2024) Improved self-cleaving precipitation tags for efficient column free bioseparations, Protein Expr. Purif., 224, 106578, https://doi.org/10.1016/ j.pep.2024.106578.
  8. Lahiry, A., Fan, Y., Stimple, S. D., Raith, M., and Wood, D. W. (2018) Inteins as tools for tagless and traceless protein purification, J. Chem. Technol. Biotechnol., 93, 1827-1835, https://doi.org/10.1002/jctb.5415.
  9. Cui, C., Zhao, W., Chen, J., Wang, J., and Li, Q. (2006) Elimination of in vivo cleavage between target protein and intein in the intein-mediated protein purification systems, Protein Expr. Purif., 50, 74-81, https://doi.org/10.1016/ j.pep.2006.05.019.
  10. Hiraga, K., Derbyshire, V., Dansereau, J. T., Van Roey, P., and Belfort, M. (2005) Minimization and stabilization of the Mycobacterium tuberculosis recA intein, J. Mol. Biol., 354, 916-926, https://doi.org/10.1016/j.jmb.2005.09.088.
  11. Esipov, R. S., Beirakhova, K. A., Chupova, L. A., Likhvantseva, V. G., Stepanova, E. V., and Miroshnokov, A. I. (2012) Recombinant fragment of pigment epithelium-derived factor (44-77) prevents pathological corneal neovascularization, Bioorg. Khim., 38, 1-8.
  12. Shen, B., Sun, X., Zuo, X., Shilling, T., Apgar, J., Ross, M., Bougri, O., Samoylov, V., Parker, M., Hancock, E., Lucero, H., Gray, B., Ekborg, N. A., Zhang, D., Johnson, J. C. S., Lazar, G., and Raab, R. M. (2012) Engineering a thermoregulated intein-modified xylanase into maize for consolidated lignocellulosic biomass processing, Nat. Biotechnol., 30, 1131-1136, e2402, https://doi.org/10.1038/nbt.2402.
  13. Wang, Y., Shi, Y., Hellinga, H. W., and Beese, L. S. (2023) Thermally controlled intein splicing of engineered DNA polymerases provides a robust and generalizable solution for accurate and sensitive molecular diagnostics, Nucleic Acids Res., 51, 5883-5894, https://doi.org/10.1093/nar/gkad368.
  14. Yan, S.-S., Yan, J., Shi, G., Xu, Q., Chen, S.-C., and Tian, Y.-W. (2005) Production of native protein by using Synechocystis sp. PCC6803 DnaB mini-intein in Escherichia coli, Protein Expr. Purif., 40, 340-345, https://doi.org/10.1016/ j.pep.2004.12.021.
  15. Wu, H., Xu, M.-Q., and Liu, X.-Q. (1998) Protein trans-splicing and functional mini-inteins of a cyanobacterial dnaB intein, Biochim. Biophys. Acta, 1387, 422-432, https://doi.org/10.1016/s0167-4838(98)00157-5.
  16. Malone, C. L., Boles, B. R., and Horswill, A. R. (2007) Biosynthesis of Staphylococcus aureus autoinducing peptides by using the Synechocystis DnaB mini-intein, Appl. Environ. Microbiol., 73, 6036-6044, https://doi.org/10.1128/AEM.00912-07.
  17. Tian, L., and Sun, S. S. (2011) A cost-effective ELP-intein coupling system for recombinant protein purification from plant production platform, PLoS One, 6, e24183, https://doi.org/10.1371/journal.pone.0024183.
  18. Gangopadhhyay, J. P., Jiang, S.-Q., van Berkel, P., and Paulus, H. (2003) In vitro splicing of erythropoietin by the Mycobacterium tuberculosis RecA intein without substituting amino acids at the splice junctions, Biochim. Biophys. Acta, 1619, 193-200, https://doi.org/10.1016/s0304-4165(02)00495-6.
  19. Banki, M. R., Feng, L., and Wood, D. W. (2005) Simple bioseparations using self-cleaving elastin-like polypeptide tags, Nat. Methods, 2, 659-661, https://doi.org/10.1038/nmeth787.
  20. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248-254, https://doi.org/10.1016/ 0003-2697(76)90527-3.
  21. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680-685, https://doi.org/10.1038/227680a0.
  22. Schägger, H., and von Jagow, G. (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa, Anal. Biochem., 166, 368-379, https://doi.org/10.1016/ 0003-2697(87)90587-2.
  23. Van Roey, P., Pereira, B., Li, Z., Hiraga, K., Belfort, M., and Derbyshire, V. (2007) Crystallographic and mutational studies of Mycobacterium tuberculosis recA mini-inteins suggest a pivotal role for a highly conserved aspartate residue, J. Mol. Biol., 367, 162-173, https://doi.org/10.1016/j.jmb.2006.12.050.
  24. Aranko, A. S., Oeemig, J. S., Zhou, D., Kajander, T., Wlodawer, A., and Iwaï, H. (2014) Structure-based engineering and comparison of novel split inteins for protein ligation, Mol. Biosyst., 10, 1023-1034, https://doi.org/10.1039/c4mb00021h.
  25. Lin, Y., Li, M., Song, H., Xu, L., Meng, Q., and Liu, X. Q. (2013) Protein trans-splicing of multiple atypical split inteins engineered from natural inteins, PLoS One, 8, e59516, https://doi.org/10.1371/journal.pone. 0059516.
  26. Chong, S., Mersha, F. B., Comb, D. G., Scott, M. E., Landry, D., Vence, L. M., Perler, F. B., Benner, J., Kucera, R. B., Hirvonen, C. A., Pelletier, J. J., Paulus, H., and Xu, M. (1997) Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element, Gene, 192, 271-281, https://doi.org/10.1016/s0378-1119(97)00105-4.
  27. Perler, F. B. (2002) InBase, the intein database, Nucleic Acids Res., 30, 383-384, https://doi.org/10.1093/ nar/30.1.383.
  28. Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D., and Higgins, D. G. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega, Mol. Syst. Biol., 7, 539, https://doi.org/10.1038/msb.2011.75.
  29. Hall, B. G. (2013). Building phylogenetic trees from molecular data with MEGA, Mol. Biol. Evol., 30, 1229-1235, https://doi.org/10.1093/molbev/mst012.
  30. Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A. J., Bambrick, J., Bodenstein, S. W., Evans, D. A., Hung, C. C., O’Neill, M., Reiman, D., Tunyasuvunakool, K., Wu, Z., Žemgulytė, A., Arvaniti, E., Beattie, C., Bertolli, O., Bridgland, A., Cherepanov, A., Congreve, M., et al. (2024) Accurate structure prediction of biomolecular interactions with AlphaFold 3, Nature, 630, 493-500, https://doi.org/10.1038/s41586-024-07487-w.
  31. Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., and Berendsen, H. J. (2005) GROMACS: fast, flexible, and free, J. Comput. Chem., 26, 1701-1718, https://doi.org/10.1002/jcc.20291.
  32. Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., and Shaw, D. E. (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field, Proteins, 78, 1950-1958, https://doi.org/10.1002/prot.22711.
  33. Sormanni, P., Aprile, F. A., and Vendruscolo, M. (2015) The CamSol method of rational design of protein mutants with enhanced solubility, J. Mol. Biol., 427, 478-490, https://doi.org/10.1016/j.jmb.2014.09.026.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Comparison of the structures of TthDnaE1 and the artificial mini-intein SspDnaB. The N- and C-terminal regions of the polypeptide chain that form the HINT domain are shown in green and orange, respectively. The β-strands formed by amino acid residues G87–V92 and L388–L406 are shown in blue and red, respectively.

Download (1MB)
3. Fig. 2. Models of the structure of mini-inteins TthDnaE1 Δ272 (a), Δ280 (b) and Δ287 (c)

Download (663KB)
4. Fig. 3. Electrophoretic analysis of splicing products of hybrid proteins containing the TthDnaE1 mini-intein with deletions Δ272, Δ280 and Δ287 (15% SDS-PAGE). Legend: “EIE” – undigested mini-intein, “EI” – residual protein without C-terminal extein, “IE” – residual protein without N-terminal extein, “I” – mini-intein without exteins, “EE” – extein ligation product

Download (514KB)
5. Fig. 4. Electrophoretic analysis of the cleavage products of the hybrid proteins based on the TthDnaE1 Δ280 mini-intein without mutations and with point substitutions C1A, D405G and C1A/D405G. a – 15% SDS-PAGE; b – 10% tricine-SDS-PAGE. Legend – as in Fig. 3; “EN” – N-terminal extein, “EC” – C-terminal extein.

Download (1MB)
6. Fig. 5. Cleavage products of hybrid proteins based on the mini-intein TthDnaE1 Δ280 (a, b) and its mutant forms C1A (c, d), D405G (e, f) and C1A/D405G (g, h) depending on the incubation conditions. a, c, d, g – Content of products at pH 6.0 and temperature in the range of 20–80 °C; b, d, f, h – at 60 °C and pH in the range of 6.0–9.0. The initial hybrid protein is shown in white on the diagrams, product “I” is shown in light gray, and product “EI” is shown in dark gray. The data were obtained by densitometric method for 15% SDS-PAA gels. “K” – hybrid protein before incubation

Download (2MB)
7. Applications
Download (5MB)

Copyright (c) 2025 Russian Academy of Sciences