Designing a thermostable mini-intein for intein-mediated purification of recombinant proteins and peptides
- Authors: Karanov A.A.1,2, Zayats E.A.1, Kostromina M.A.1, Abramchik Y.A.1, Sharafutdinova A.R.1, Surkova M.S.1, Zamyatnin A.A.2, Esipov R.S.1,2
-
Affiliations:
- Institute of Bioorganic Chemistry, Russian Academy of Sciences
- Lomonosov Moscow State University
- Issue: Vol 90, No 6 (2025)
- Pages: 884 – 895
- Section: Articles
- URL: https://rjdentistry.com/0320-9725/article/view/688069
- DOI: https://doi.org/10.31857/S0320972525060117
- EDN: https://elibrary.ru/JDMFOD
- ID: 688069
Cite item
Abstract
This paper reports design of a thermostable temperature-activated mini-intein based on the full-length intein DnaE1 from Thermus thermophilus HB27 (TthDnaE1). We performed rational design of three mini-inteins TthDnaE1 Δ272, Δ280 and Δ287 through deletion mutations in the full-length intein sequence. Two mini-inteins (Δ272 and Δ280) were capable of efficient protein splicing at temperatures above 50°C. The most active mini-intein with the Δ280 deletion was chosen as the basis for further design of a self-cleaving carrier of affinity tags through single-point mutagenesis. We performed the C1A, D405G and C1A/D405G mutations, which were proposed to eliminate the intein’s capability of N-terminal extein cleavage and extein ligation. As a result, the mini-intein Δ280 with double mutation C1A/D405G displayed the highest efficiency of C-terminal extein cleavage at its temperature optimum around 60°C. Thus, we constructed thermostable temperature-activated mini-inteins capable of efficient protein splicing or cleavage of C-terminal extein. The engineered TthDnaE1 Δ280 C1A/D405G mini-intein can serve as basis for the development of new expression system for intein-mediated production of pharmaceutical recombinant proteins and peptides.
Full Text

About the authors
A. A. Karanov
Institute of Bioorganic Chemistry, Russian Academy of Sciences; Lomonosov Moscow State University
Author for correspondence.
Email: andrey-karanov2000@mail.ru
Faculty of Bioengineering and Bioinformatics
Russian Federation, 117997 Moscow; 119234 MoscowE. A. Zayats
Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: refolding@mail.ru
Russian Federation, 117997 Moscow
M. A. Kostromina
Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: refolding@mail.ru
Russian Federation, 117997 Moscow
Yu. A. Abramchik
Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: refolding@mail.ru
Russian Federation, 117997 Moscow
A. R. Sharafutdinova
Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: refolding@mail.ru
Russian Federation, 117997 Moscow
M. S. Surkova
Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: refolding@mail.ru
Russian Federation, 117997 Moscow
A. A. Zamyatnin
Lomonosov Moscow State University
Email: refolding@mail.ru
Faculty of Bioengineering and Bioinformatics
Russian Federation, 119234 MoscowR. S. Esipov
Institute of Bioorganic Chemistry, Russian Academy of Sciences; Lomonosov Moscow State University
Email: refolding@mail.ru
Faculty of Bioengineering and Bioinformatics
Russian Federation, 117997 Moscow; 119234 MoscowReferences
- Ben-Bassat, A. (1991) Purification and Analysis of Recombinant Proteins (Seetharam, R., and Sharma, S. K., eds), Marcel Dekker, N.Y., pp. 147-151.
- Enfors, S. O. (1992) Control of in vivo proteolysis in the production of recombinant proteins, Trends Biotechnol, 10, 310-315, https://doi.org/10.1016/0167-7799(92)90256-u.
- Mahmoodi, S., Pourhassan-Moghaddam, M., Wood, D. W., Majdi, H., and Zarghami, N. (2019) Current affinity approaches for purification of recombinant proteins, Cogent Biol., 5, 1665406, https://doi.org/10.1080/ 23312025.2019.1665406.
- Eskandari, A., Leow, T. C., Rahman, M. B. A., and Oslan, S. N. (2024) Utilization and prospect of purification technologies in natural proteins, peptides and recombinant proteins, J. Proteins Proteom., 15, 233-257, https://doi.org/10.1007/s42485-024-00139-7.
- Esipov, R. S., Stepanenko, V. N., Chupova, L. A., Boyarskikh, U. A., Filipenko, M. L., and Miroshnikov, A. I. (2008) Production of recombinant human epidermal growth factor using Ssp dnaB mini-intein system, Protein Expr. Purif., 61, 1-6, https://doi.org/10.1016/j.pep.2008.05.009.
- Volkmann, G., and Mootz, H. D. (2013) Recent progress in intein research: from mechanism to directed evolution and applications, Cell Mol. Life Sci., 70, 1185-1206, https://doi.org/10.1007/s00018-012-1120-4.
- Yuan, H., Prabhala, S. V., Coolbaugh, M. J., Stimple, S. D., and Wood, D. W. (2024) Improved self-cleaving precipitation tags for efficient column free bioseparations, Protein Expr. Purif., 224, 106578, https://doi.org/10.1016/ j.pep.2024.106578.
- Lahiry, A., Fan, Y., Stimple, S. D., Raith, M., and Wood, D. W. (2018) Inteins as tools for tagless and traceless protein purification, J. Chem. Technol. Biotechnol., 93, 1827-1835, https://doi.org/10.1002/jctb.5415.
- Cui, C., Zhao, W., Chen, J., Wang, J., and Li, Q. (2006) Elimination of in vivo cleavage between target protein and intein in the intein-mediated protein purification systems, Protein Expr. Purif., 50, 74-81, https://doi.org/10.1016/ j.pep.2006.05.019.
- Hiraga, K., Derbyshire, V., Dansereau, J. T., Van Roey, P., and Belfort, M. (2005) Minimization and stabilization of the Mycobacterium tuberculosis recA intein, J. Mol. Biol., 354, 916-926, https://doi.org/10.1016/j.jmb.2005.09.088.
- Esipov, R. S., Beirakhova, K. A., Chupova, L. A., Likhvantseva, V. G., Stepanova, E. V., and Miroshnokov, A. I. (2012) Recombinant fragment of pigment epithelium-derived factor (44-77) prevents pathological corneal neovascularization, Bioorg. Khim., 38, 1-8.
- Shen, B., Sun, X., Zuo, X., Shilling, T., Apgar, J., Ross, M., Bougri, O., Samoylov, V., Parker, M., Hancock, E., Lucero, H., Gray, B., Ekborg, N. A., Zhang, D., Johnson, J. C. S., Lazar, G., and Raab, R. M. (2012) Engineering a thermoregulated intein-modified xylanase into maize for consolidated lignocellulosic biomass processing, Nat. Biotechnol., 30, 1131-1136, e2402, https://doi.org/10.1038/nbt.2402.
- Wang, Y., Shi, Y., Hellinga, H. W., and Beese, L. S. (2023) Thermally controlled intein splicing of engineered DNA polymerases provides a robust and generalizable solution for accurate and sensitive molecular diagnostics, Nucleic Acids Res., 51, 5883-5894, https://doi.org/10.1093/nar/gkad368.
- Yan, S.-S., Yan, J., Shi, G., Xu, Q., Chen, S.-C., and Tian, Y.-W. (2005) Production of native protein by using Synechocystis sp. PCC6803 DnaB mini-intein in Escherichia coli, Protein Expr. Purif., 40, 340-345, https://doi.org/10.1016/ j.pep.2004.12.021.
- Wu, H., Xu, M.-Q., and Liu, X.-Q. (1998) Protein trans-splicing and functional mini-inteins of a cyanobacterial dnaB intein, Biochim. Biophys. Acta, 1387, 422-432, https://doi.org/10.1016/s0167-4838(98)00157-5.
- Malone, C. L., Boles, B. R., and Horswill, A. R. (2007) Biosynthesis of Staphylococcus aureus autoinducing peptides by using the Synechocystis DnaB mini-intein, Appl. Environ. Microbiol., 73, 6036-6044, https://doi.org/10.1128/AEM.00912-07.
- Tian, L., and Sun, S. S. (2011) A cost-effective ELP-intein coupling system for recombinant protein purification from plant production platform, PLoS One, 6, e24183, https://doi.org/10.1371/journal.pone.0024183.
- Gangopadhhyay, J. P., Jiang, S.-Q., van Berkel, P., and Paulus, H. (2003) In vitro splicing of erythropoietin by the Mycobacterium tuberculosis RecA intein without substituting amino acids at the splice junctions, Biochim. Biophys. Acta, 1619, 193-200, https://doi.org/10.1016/s0304-4165(02)00495-6.
- Banki, M. R., Feng, L., and Wood, D. W. (2005) Simple bioseparations using self-cleaving elastin-like polypeptide tags, Nat. Methods, 2, 659-661, https://doi.org/10.1038/nmeth787.
- Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248-254, https://doi.org/10.1016/ 0003-2697(76)90527-3.
- Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680-685, https://doi.org/10.1038/227680a0.
- Schägger, H., and von Jagow, G. (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa, Anal. Biochem., 166, 368-379, https://doi.org/10.1016/ 0003-2697(87)90587-2.
- Van Roey, P., Pereira, B., Li, Z., Hiraga, K., Belfort, M., and Derbyshire, V. (2007) Crystallographic and mutational studies of Mycobacterium tuberculosis recA mini-inteins suggest a pivotal role for a highly conserved aspartate residue, J. Mol. Biol., 367, 162-173, https://doi.org/10.1016/j.jmb.2006.12.050.
- Aranko, A. S., Oeemig, J. S., Zhou, D., Kajander, T., Wlodawer, A., and Iwaï, H. (2014) Structure-based engineering and comparison of novel split inteins for protein ligation, Mol. Biosyst., 10, 1023-1034, https://doi.org/10.1039/c4mb00021h.
- Lin, Y., Li, M., Song, H., Xu, L., Meng, Q., and Liu, X. Q. (2013) Protein trans-splicing of multiple atypical split inteins engineered from natural inteins, PLoS One, 8, e59516, https://doi.org/10.1371/journal.pone. 0059516.
- Chong, S., Mersha, F. B., Comb, D. G., Scott, M. E., Landry, D., Vence, L. M., Perler, F. B., Benner, J., Kucera, R. B., Hirvonen, C. A., Pelletier, J. J., Paulus, H., and Xu, M. (1997) Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element, Gene, 192, 271-281, https://doi.org/10.1016/s0378-1119(97)00105-4.
- Perler, F. B. (2002) InBase, the intein database, Nucleic Acids Res., 30, 383-384, https://doi.org/10.1093/ nar/30.1.383.
- Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D., and Higgins, D. G. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega, Mol. Syst. Biol., 7, 539, https://doi.org/10.1038/msb.2011.75.
- Hall, B. G. (2013). Building phylogenetic trees from molecular data with MEGA, Mol. Biol. Evol., 30, 1229-1235, https://doi.org/10.1093/molbev/mst012.
- Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A. J., Bambrick, J., Bodenstein, S. W., Evans, D. A., Hung, C. C., O’Neill, M., Reiman, D., Tunyasuvunakool, K., Wu, Z., Žemgulytė, A., Arvaniti, E., Beattie, C., Bertolli, O., Bridgland, A., Cherepanov, A., Congreve, M., et al. (2024) Accurate structure prediction of biomolecular interactions with AlphaFold 3, Nature, 630, 493-500, https://doi.org/10.1038/s41586-024-07487-w.
- Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., and Berendsen, H. J. (2005) GROMACS: fast, flexible, and free, J. Comput. Chem., 26, 1701-1718, https://doi.org/10.1002/jcc.20291.
- Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., and Shaw, D. E. (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field, Proteins, 78, 1950-1958, https://doi.org/10.1002/prot.22711.
- Sormanni, P., Aprile, F. A., and Vendruscolo, M. (2015) The CamSol method of rational design of protein mutants with enhanced solubility, J. Mol. Biol., 427, 478-490, https://doi.org/10.1016/j.jmb.2014.09.026.
Supplementary files
