In a laboratory experiment with growing miscanthus sacchariflorus application of iocharl CO₂ flux from soil reduces
- Autores: Malakheeva A.V.1, Smorkalov I.A.2, Valdayskikh V.V.1, Veselkin D.V.2, Betekhtina A.A.1
-
Afiliações:
- Ural Federal University
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences
- Edição: Nº 3 (2025)
- Páginas: 173-182
- Seção: Articles
- URL: https://rjdentistry.com/0367-0597/article/view/687341
- DOI: https://doi.org/10.31857/S0367059725030019
- EDN: https://elibrary.ru/tcyczb
- ID: 687341
Citar
Resumo
The aim of the work was to assess CO₂ emission from soil when adding several types of biochars. In a laboratory experiment, the effects of adding different biochars to the soil were studied. They were recommended for different purposes based on their properties: soil melioration (from Amaranthus cruentus biomass) or carbon sequestration (from Betula sp. wood and Miscanthus sacchariflorus biomass). Soil respiration (in the absence of vegetative plants) and ecosystem respiration (in the presence of vegetative M. sacchariflorus individuals) were assessed. Addition of all biochar varieties resulted in a decrease in CO₂ emission from the soil surface. The CO₂ flux in the absence of living M. sacchariflorus plants in the vegetation vessels decreased to a similar extent when adding biochars of all varieties. However, in the presence of living M. sacchariflorus plants in the vegetation vessels, differences were found in the intensity of ecosystem respiration in the variants with different biochar varieties. In the presence of M. sacchariflorus plants, the highest CO₂ flux was observed with the addition of biochar from A. cruentus, and the lowest with the addition of biochar from Betula sp. Thus, firstly, the addition of biochar reduced the CO₂ flux from the soil and, secondly, the presence of vegetative plants is a significant factor modifying the differences in respiratory activity between substrates with biochars of different origins.
Texto integral

Sobre autores
A. Malakheeva
Ural Federal University
Autor responsável pela correspondência
Email: alina.malakheeva@gmail.com
Rússia, 620083 Yekaterinburg
I. Smorkalov
Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences
Email: alina.malakheeva@gmail.com
Rússia, 620144 Yekaterinburg
V. Valdayskikh
Ural Federal University
Email: alina.malakheeva@gmail.com
Rússia, 620083 Yekaterinburg
D. Veselkin
Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences
Email: alina.malakheeva@gmail.com
Rússia, 620144 Yekaterinburg
A. Betekhtina
Ural Federal University
Email: alina.malakheeva@gmail.com
Rússia, 620083 Yekaterinburg
Bibliografia
- Lehmann J., Gaunt J., Rondon M. Bio-char sequestration in terrestrial ecosystems // A Review. Mitig. Adapt. Strateg. Glob. Chang. 2006. V. 11. P. 395–419. https://doi.org/10.1007/s11027-005-9006-5
- Lehmann J. A Handful of carbon // Nature. 2007. V. 447. P. 143–144. https://doi.org/10.1038/447143a
- Laird D.A. The charcoal vision: a win–win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality // Agron. J. 2008. V. 100. P. 178–181.
- Kauffman N., Dumortier J., Hayes D.J. et al. Producing energy while sequestering carbon? The relationship between biochar and agricultural productivity // Biomass and Bioenergy. 2014. V. 63. P. 167–176. https://doi.org/10.1016/j.biombioe.2014.01.049
- Nguyen D.H., Scheer C., Rowlings D.W., Grace P.R. Rice husk biochar and crop residue amendment in subtropical cropping soils: Effect on biomass production, nitrogen use efficiency and greenhouse gas emissions // Biol. Fertil. Soils. 2016. V. 52. P. 261–270. https://doi.org/10.1007/s00374-015-1074-4
- Tu P., Zhang G., Wei G. et al. Influence of pyrolysis temperature on the physicochemical properties of biochars obtained from herbaceous and woody plants // Bioresour. Bioprocess. 2022. V. 9. Art. 131. https://doi.org/10.1186/s40643-022-00618-z
- Cantrell K.B., Hunt P.G., Uchimiya M. et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar // Bioresource Technology. 2012. V. 107. P. 419–428. https://doi.org/10.1016/j.biortech.2011.11.084
- Zhao L., Cao X., Mašek O., Zimmerman A. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures // Journal of Hazardous Materials. 2013. V. 256–257. P. 1–9. https://doi.org/10.1016/j.jhazmat.2013.04.015
- Collard F.X., Blin J. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin // Renew. Sustain. Energy Rev. 2014. V. 38. P. 594–608. https://doi.org/10.1016/j.rser.2014.06.013
- Atoloye I.A., Adesina I.S., Sharma H. et al. Hemp biochar impacts on selected biological soil health indicators across different soil types and moisture cycles // Plos one. 2022. V. 17. № 2. Art. e0264620. https://doi.org/10.1371/journal.pone.0264620
- Артемьева Е.П., Валдайских В.В., Радченко Т.А., Карпухин М.Ю. Перспективы выращивания высокотравных растений в качестве углероддепонирующих культур // Аграрный вестник Урала. 2022. № 12 (227). С. 2–10.
- Малахеева А.В. Секвестрация углерода из биомассы крупнотравных растений путем получения биоуглей // Экология: факты, гипотезы, модели: Всерос. конф. молодых ученых. Екатеринбург, 2023. С. 154–159. https://doi.org/10.5281/zenodo.10039195.
- Dondini M., Hastings A., Saiz G. et al. The potential of miscanthus to sequester carbon in soils: Comparing field measurements in Carlow, Ireland to model predictions // GCB Bioenergy 2009. V. 1. P. 413–425. https://doi.org/10.1111/j.1757-1707.2010.0103
- Hudiburg T.W., Davis S.C., Parton W., Delucia E.H. Bioenergy crop greenhouse gas mitigation potential under a range of management practices // GCB Bioenergy. 2015. V. 7. № 2. P. 366–374. https://doi.org/10.1111/gcbb.12152
- Adjuik T., Rodjom A.M., Miller K.E. et al. Application of hydrochar, digestate, and synthetic fertilizer to a Miscanthus x giganteus crop: implications for biomass and greenhouse gas emissions // Appl. Sci. 2020. V. 10. № 24. Art. 8953. https://doi.org/10.3390/app10248953
- Robertson A.D., Whitaker J., Morrison R. et al. A Miscanthus plantation can be carbon neutral without increasing soil carbon stocks // GCB Bioenergy. 2017. V. 9. P. 645–661. https://doi.org/10.1111/gcbb.12397
- Wang W., Bai J.H., Lu Q.Q. et al. Pyrolysis temperature and feedstock alter the functional groups and carbon sequestration potential of Phragmites australis- and Spartina alterniflora-derived biochars // GCB Bioenergy. 2021. V. 13. №3. P. 493–506. https://doi.org/10.1111/gcbb.12795
- Аринушкина Е.В. Руководство по химическому анализу почв. М.: Изд-во МГУ, 1970. 488 с.
- Воробьева Л.А. Теория и практика химического анализа почв. M.: ГЕОС, 2006. 400 с.
- Song X., Pan G., Zhang C. et al. Effects of biochar application on fluxes of three biogenic greenhouse gases: a meta-analysis // Ecosyst. Heal. Sustain. 2016. V. 2. № 2. e01202. https://doi.org/10.1002/ehs2.1202
- Liu S., Zhang Y., Zong Y. et al. Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: a meta-analysis // GCB Bioenergy. 2016. V. 8. № 2. P. 392–406. https://doi.org/10.1111/gcbb.12265.
- He Y., Zhou X., Jiang L. et al. Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis // GCB Bioenergy. 2017. V. 9. № 4. P. 743–755. https://doi.org/10.1111/gcbb.12376
- Fidel R.B., Laird D.A., Parkin T.B. Effect of biochar on soil greenhouse gas emissions at the laboratory and field scales // Soil Systems. 2019. V. 3. № 1. Art. 8. https://doi.org/10.3390/soilsystems3010008
- Кузяков Я.В., Ларионова А.А. Вклад ризомикробного и корневого дыхания в эмиссию CO₂ из почвы (обзор) // Почвоведение. 2006. № 7. С. 842–854.
- Lehmann J., Rillig M.C., Thies J. et al. Biochar effects on soil biota – A review // Soil Biol. Biochem. 2011. V. 43. № 9. P. 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022
- Cross A., Sohi S.P. The priming potential of biochar products in relation to labile carbon contents and soil organic matter status // Soil Biol. Biochem. 2011. V. 43. № 10. P. 2127–2134. https://doi.org/10.1016/j.soilbio.2011.06.016
- El-Naggar A., El-Naggar A.H., Shaheen S.M. et al. Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: a review // Journal of Environmental Management. 2019. V. 241. P. 458–467. https://doi.org/10.1016/j.jenvman.2019.02.044
- Xiang Y., Deng Q., Duan H., Guo Y. Effects of biochar application on root traits: a meta-analysis // GCB Bioenergy. 2017. V. 9. P. 1563–1572. https://doi.org/10.1111/gcbb.12449
Arquivos suplementares
