Single molecules detection according to plasmon-enhanced photoluminescence in CeYTbF3 colloidal nanoparticles

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The interaction of luminescent nanoparticles with plasmonic nanoparticles changes their luminescence, which is associated with the appearance of Förster and Purcell effects. To enhance luminescence, it is important to reduce the effect of the Foerster effect. The finite difference method in the time domain made it possible to determine the conditions for the predominance of the Purcell effect and to develop a technique for analyzing the amplification of transitions, which increases the sensitivity of sensors based on fluorescent nanoparticles.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Е. Izbasarova

Kazan (Volga Region) Federal University

Хат алмасуға жауапты Автор.
Email: Izbasarova.E.A@mail.ru

Институт физики

Ресей, Kazan

A. Gazizov

Kazan (Volga Region) Federal University

Email: Izbasarova.E.A@mail.ru

Институт физики

Ресей, Kazan

Әдебиет тізімі

  1. Cohen L., Cui N., Cai Y. et al. // ACS Nano. 2020. V. 14. No. 8. P. 9491.
  2. Barik A., Otto L.M., Yoo D. et al. // Nano Lett. 2014. V. 14. No. 4. P. 2006.
  3. Избасарова Э.А., Газизов А.Р., Харинцев С.С. // Изв. РАН. Сер. физ. 2023. Т. 87. № 12. С. 1788, Izbasarova E.A., Gazizov A.R., Kharintsev S.S. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 12. P. 1862.
  4. Qin X., Xu J., Wu Y., Liu X. // ACS Cent. Sci. 2019. V. 5. P. 29.
  5. Chen G., Ohulchanskyy T.Y., Liu S. et al. // ACS Nano. 2012. V. 6. No. 4. P. 2969.
  6. Shah S.J., Li W., Tang Y. et al. // Appl. Catal. B. 2022. V. 315. Art. No. 121555.
  7. Жарков Д.К., Шмелев А.Г., Леонтьев А.В. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 12. С. 1746, Zharkov D.K., Shmelev A.G., Leontyev A.V. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 12. P. 1486.
  8. Mendez-Gonzalez D., Lopez-Cabarcos E., Rubio-Retama J., Laurenti M. // Adv. Colloid Interface Sci. 2017. V. 249. P. 66.
  9. Yang B., Chen H., Zheng Z., Li G. // J. Luminescence. 2020. V. 223. Art. No. 117226.
  10. Han Y., Noor M.O., Sedighi A. et al. // Langmuir. 2017. V. 33. No. 45. P. 12839.
  11. Mendez-Gonzalez D., Melle S., Calderón O.G. et al. // Nanoscale. 2019. V. 11. No. 29. P. 13832.
  12. Kushlyk M., Tsiumra V., Zhydachevsky Y. et al. // J. Alloys Compounds. 2019. V. 804. P. 202.
  13. Lu D., Cho S.K., Ahn S. et al. // ACS Nano. 2014. V. 8. No. 8. P. 7780.
  14. Sun Q.C., Mundoor H., Ribot J.C. et al. // ACS Nano. 2014. V. 14. No. 1. P. 101.
  15. Saboktakin M., Ye X., Chettiar U.K. et al. // ACS Nano. 2013. V. 7. No. 8. P. 7186.
  16. Greybush N.J., Saboktakin M., Ye X. et al. // ACS Nano. 2014. V. 8. No. 9. P. 9482.
  17. Yi G., Moon B.S., Wen X. et al. // J. Phys. Chem. C. 2018. V. 122. No. 24. P. 13047.
  18. Das A., Mao C., Cho S.et al. // Nature Commun. 2018. V. 9. No. 1. P. 4828.
  19. Zhang S.Z., Sun L.D., Tian H. et al. // Chem. Commun. 2009. No. 18. P. 2547.
  20. Wu Q., Long Q., Li H. et al. // Talanta. 2015. V. 136. P. 47.
  21. Li Z., Wang L., Wang Z. et al. // J. Phys. Chem. C. 2011. V. 115. No. 8. P. 3291.
  22. Seregina E.A., Seregin A.A., Tikhonov G.V. // Opt. Spectrosc. 2014. V. 116. No. 3. P. 438.
  23. Terra I.A., Borrero-González L.J., Almeida J.M. et al. // Quim. Nova. 2020. V. 43. P. 188.
  24. Ramble J.R. Handbook of chemistry and physics. CRC Press, 2021. 1550 p.
  25. https://www.chemsrc.com/en/cas/9002-98-6_658402.html
  26. Neese F. // Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012. V. 2. P. 73.
  27. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. P. 3297.
  28. Becke A.D. // J. Chem. Phys. 1993. V. 98. P. 5648.
  29. Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. P. 785.
  30. Grimme S., Antony J., Ehrlich S. et al. // J. Chem. Phys. 2010. V. 132. No. 15. P. 154104.
  31. Grimme S., Ehrlich S., Goerigk L. // J. Comput. Chem. 2011. V. 32. P. 1456.
  32. Valueva S.V., Vylegzhanina M.E., Meleshko T.K. et al. // Russ. J. Appl. Chem. 2020. V. 93. P. 89.
  33. https://omlc.org/spectra/PhotochemCAD/html/084.html.
  34. Pudovkin M.S., Kalinichenko S.I., Nizamutdinov A.S. // Opt. Mater. 2024. V. 148. Art. No. 114831.
  35. Nizamutdinov A., Lukinova E., Shamsutdinov N. et al. // J. Compos. Sci. 2023. V. 7. P. 255.
  36. Khusainova A.I., Nizamutdinov A.S., Shamsutdinov N.I. et al. // Materials. 2024. V. 17. P. 316.
  37. Gazizov A.R., Salakhov M.Kh., Kharintsev S.S. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. Suppl. 1. P. S71.
  38. Газизов А.Р., Салахов М.Х., Харинцев С.С. // Письма в ЖЭТФ. 2023. Т. 117. № 9. C. 670, Gazizov A.R., Salakhov M. Kh., Kharintsev S.S. // JETP Lett. 2023. V. 117. No. 9. P. 668.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Normalized experimental luminescence spectrum of Tb3+ ions (blue spectrum) and the spectrum of power absorbed in gold (orange spectrum). The inset shows a schematic representation of nonradiative energy transfer from donor to acceptor.

Жүктеу (320KB)
3. Fig. 2. Dependence of the Purcell and Forster coefficients on the linker layer thickness in a configuration with one gold nanoparticle with a diameter of 95 (a) and 10 nm (b), in a parallel configuration with two gold nanoparticles with diameters of 95 nm (c), and in a configuration in which the phosphor is bound to two contacting gold nanoparticles (d). The inset shows schematic images of the system configurations.

Жүктеу (776KB)
4. Fig. 3. Purcell enhancement coefficient for a single gold nanoparticle with different numbers of analyte molecules (radachlorin) in its vicinity (a), one analyte molecule (radachlorin) with a silver nanoparticle (b) and a Drude particle (c), and one analyte molecule (Rose Bengal) with a gold nanoparticle (c).

Жүктеу (760KB)
5. Fig. 4. Purcell enhancement factor for the configuration of 5 gold nanoparticles on a gold substrate in the form of a pyramid (a) for the cases of the absence of analyte and the presence of radachlorin or rose bengal (b).

Жүктеу (386KB)

© Russian Academy of Sciences, 2024