CNOT Quantum Gate Based on Spatial Photonic Qubits Under Resonant Electro-Optical Control

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A theoretical model of a quantum node that implements the two-qubit CNOT operation with use of photonic qubits with spatial encoding is considered. Each qubit is represented by a pair of modes supporting an arbitrary superposition of single-photon states. The active element of the node is a single or double quantum dot with a tunable frequency, which coherently exchanges an energy quantum with the modes. The spectral characteristics of the quantum node elements are simulated. The probability of implementation of a controlled inversion of the qubit state is calculated depending on the system parameters.

Full Text

Restricted Access

About the authors

A. V. Tsukanov

Valiev Institute of Physics and Technology of the Russian Academy of Sciences

Author for correspondence.
Email: tsukanov@ftian.ru
Russian Federation, Moscow

I. Yu. Kateev

Valiev Institute of Physics and Technology of the Russian Academy of Sciences

Email: ikateyev@mail.ru
Russian Federation, Moscow

References

  1. Dietrich C.P., Fiore A., Thompson M.G., Kamp M., and Höfling S. GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits, Las. Photon. Rev., 2016. Vol. 10. P. 870.
  2. Ramakrishnan R.K., Ravichandran A.B., Mishra A., Kaushalram A., Hegde G., Talabattula S., and Rohde P.P. Integrated photonic platforms for quantum technology: A review, ISSS Journal of Micro and Smart Systems, 2023. Vol. 12. P. 83.
  3. Adcock J.C., Bao J., Chi Y., Chen X., Bacco D., Gong Q., Oxenløwe L.K., Wang J., and Ding Y. Advances in silicon quantum photonics, IEEE Journal of Selected Topics Of Quantum Electronics, 2021. Vol. 27. P. 1.
  4. Wan N.H., Lu T.-J., Chen K.C., Walsh M.P., Trusheim M.E., De Santis L., Bersin E.A., Harris I.B., Mouradian S.L., Christen I.R., Bielejec E.S., and Englund D. Large-scale integration of artificial atoms in hybrid photonic circuits, Nature, 2020. Vol. 583. P. 226.
  5. Atatüre M., Englund D., Vamivakas N., Lee S.-Y., and Wrachtrup, J., Material platforms for spin- based photonic quantum technologies, Nat. Rev. Mat., 2018. Vol. 3. P. 38.
  6. Ruf M., Wan N.H., Choi H., Englund D., and Hanson R. Quantum networks based on color centers in diamond, Journ. Appl. Phys., 2021. Vol. 130. P. 070901.
  7. Elshaari A.W., Pernice W., Srinivasan K., Benson O., and Zwiller V. Hybrid integrated quantum photonic circuits, Nat. Photon., 2020. Vol. 14. P. 285.
  8. Davanco M., Liu J., Sapienza L., Zhang C.-Z., Cardoso J.V.M., Verma V., Mirin R., Nam S.W., Liu L., and Srinivasan K. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices, Nat. Commun., 2017. Vol. 8. P. 889.
  9. Jiang P. and Balram K.C. Suspended gallium arsenide platform for building large scale photonic integrated circuits: passive devices, Opt. Expr., 2020. Vol. 28. P. 12262.
  10. Blumenthal, D.J., Ieee, F., Heideman, R., Geuzebroek, D., Leinse, A., and Roeloffzen, C., Silicon nitride in silicon photonics, Proc. IEEE, 2018, vol. 106, p. 2209.
  11. Chanana A., Larocque H., Moreira R., Carolan J., Guha B., Melo E.G., Anant V., Song J., Englund D., Blumenthal D.J., Srinivasan K., and Davanco M. Ultra-low loss quantum photonic circuits integrated with single quantum emitters, Nat. Commun., 2022. Vol. 13. P. 7693.
  12. Zhong H.S., Wang H., Deng Y.-H., Chen M.-C., Peng L.-C., Luo Y.-H., Qin J., Wu D., Ding X., Hu Y., Hu P., Yang X.-Y., Zhang W.-J., Li H., Li Y., Jiang X., Gan L., Yang G., You L., Wang Z., Li L., Liu N.-L., Lu C.-Y., and Pan J.-W. Quantum computational advantage using photons, Science, 2020. Vol. 370. P. 1460.
  13. Arrazola J.M., Bergholm V., Brádler K., Bromley T.R., Collins M.J., Dhand I., Fumagalli A., Gerrits T., Goussev A., Helt L.G., Hundal J., Isacsson T., Israel R.B., Izaac J., Jahangiri S., Janik R., Killoran N., Kumar S.P., Lavoie J., Lita A.E., Mahler D.H., Menotti M., Morrison B., Nam S.W., Neuhaus L., Qi H.Y., Quesada N., Repingon A., Sabapathy K.K., Schuld M., Su D., Swinarton J., Száva A., Tan K., Tan P., Vaidya V.D., Vernon Z., Zabaneh Z., and Zhang Y. Quantum circuits with many photons on a programmable nanophotonic chip, Nature, 2021. Vol. 591. P. 54.
  14. Qiang X., Zhou X., Wang J., Wilkes C.M., Loke T., O’Gara S., Kling L., Marshall G.D., Santagati R., Ralph T.C., Wang J.B., O’Brien J.L., Thompson M.G., and Matthews J.C.F. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing, Nat. Photon., 2018, vol. 12, p. 534.
  15. Wang M. and Yan F. Generation of four-photon polarization entangled state based on Einstein-Podolsky-Rosen entanglers, Eur. Phys. J. D, 2014. Vol. 68. P. 29.
  16. Milburn G.J. Quantum optical Fredkin gate, Phys. Rev. Lett., 1989. Vol. 62. P. 2124.
  17. Kok P., Munro W.J., Nemoto K., Ralph T.C., Dowling J.P., and Milburn G.J. Linear optical quantum computing with photonic qubits, Rev. Mod. Phys., 2007. Vol. 79. P. 135.
  18. O’Brien J.L. Optical quantum computing, Science, 2007. Vol. 318. P. 1567.
  19. Knill E., Laflamme R., and Milburn G.J. A scheme for efficient quantum computation with linear optics, Nature, 2001. Vol. 409. P. 46.
  20. Laing A., Peruzzo A., Politi A., Verde M.R., Halder M., Ralph T.C., Thompson M.G., and O’Brien J.L. High-fidelity operation of quantum photonic circuits, Appl. Phys. Lett., 2010. Vol. 97. P. 211109.
  21. Pooley M.A., Ellis D.J.P., Patel R.B., Bennett A.J., Chan K.H.A., Farrer I., Ritchie D.A., and Shields A.J. Controlled-NOT gate operating with single photons, Appl. Phys. Lett., 2012. Vol. 100. P. 211103.
  22. Lee J.-M., Lee W.-J., Kim M.-S., Cho S.W., Ju J.J., Navickaite G., and Fernandez J. Controlled-NOT operation of SiN-photonic circuit using photon pairs from silicon-photonic circuit, Opt. Commun., 2022. Vol. 509. P. 127863.
  23. Tsukanov A.V. and Kateev I.Yu. Quantum calculations on quantum dots in semiconductor microcavities. Part I, Russ. Mocroelectron., 2014. Vol. 43. P. 315.
  24. Tsukanov A.V. and Kateev I. Yu., Quantum calculations on quantum dots in semiconductor microcavities. Part II, Russ. Mocroelectron., 2014. Vol. 43. P. 377.
  25. Tsukanov A.V. and Kateev I. Yu., Quantum calculations on quantum dots in semiconductor microcavities. Part III, Russ. Mocroelectron., 2015. Vol. 44. P. 79.
  26. Yeh C., and Shimabukuro F.I. The essence of dielectric waveguides, Springer, 2008. 522 p.
  27. Prorok S., Petrov A., Eich M., Luo J., and Jen A.K.-Y. Configurable silicon photonic crystal waveguides, Appl. Phys. Lett., 2013. Vol. 103. P. 261112.
  28. Yariv A., Xu Y., Lee R.K., and Scherer A. Coupled-resonator optical waveguide: a proposal and analysis, Opt. Lett., 1999. Vol. 24. P. 711.
  29. Baba T., Kawasaki T., Sasaki H., Adachi J., and Mori D. Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide, Opt. Expr., 2008. Vol. 16. P. 9245.
  30. Kondo K., Shinkawa M., Hamachi Y., Saito Y., Arita Y., and Baba T. Ultrafast slow-light tuning beyond the carrier lifetime using photonic crystal waveguides, Phys. Rev. Lett., 2013. Vol. 110. P. 053902.
  31. Debnath K., Welna K., Ferrera M., Deasy K., Lidzey D.G., and O’Faolain L. Highly efficient optical filter based on vertically coupled photonic crystal cavity and bus waveguide, Opt. Lett., 2013. Vol. 38. P. 154.
  32. Zang X., Zhou T., Cai B., and Zhu Y. Single-photon transport properties in an optical waveguide coupled with a Λ-type three-level atom, J. Opt. Soc. Am. B, 2013. Vol. 30. P. 1135.
  33. Cerf N.J., Adami C., and Kwiat P.G. Optical simulation of quantum logic, Phys. Rev. A, 1998. Vol. 57. P. R1477.
  34. Reck M., and Zeilinger A. Experimental realization of any discrete unitary operator, Phys. Rev. Lett., 1994. Vol. 73. P. 58.
  35. Chuang I.L., and Yamamoto Y. A simple quantum computer, Phys. Rev. A, 1995. Vol. 52. P. 3486.
  36. Johne R., and Fiore A. Proposal for a two-qubit quantum phase gate for quantum photonic integrated circuits, Phys. Rev. A, 2012. Vol. 86. P. 063815.
  37. Chang J.-T., and Zubairy M.S. Three-qubit phase gate based on cavity quantum electrodynamics, Phys. Rev. A, 2008. Vol. 77. P. 012389.
  38. Shu J., Zou X.-B., Xiao Y.-F., and Guo G.-C. Quantum phase gate of photonic qubits in a cavity QED system, Phys. Rev. A, 2007. Vol. 75. P. 044302.
  39. Golovinskii P.A. Influence of the Stark effect on the resonance excitation transfer between quantum dots, Semiconductors, 2014. Vol. 48. P. 760.
  40. Tsukanov A.V. Principle of measuring the electron population of a quantum dot using a single-photon transistor based on an array of quantum dots, Quantum Electron., 2021. Vol. 51. P. 718.
  41. Tsukanov A.V., and Kateev I. Yu. Interaction of an array of single-electron quantum dots with a microcavity field with allowance for Coulomb correlations, Quantum Electron., 2022. Vol. 52. P. 474.
  42. Tsukanov A.V., and Kateev I. Yu. Optical measurement of a quantum dot state in a microdisk by a Stark transducer, Laser Phys. Lett., 2022. Vol. 19. P. 086201.
  43. Bayindir M., Temelkuran B., and Ozbay E. Tight-binding description of the coupled defect modes in three-dimensional photonic crystals, Phys. Rev. Lett., 2000. Vol. 84. P. 2140.
  44. Guha B., Marsault F., Cadiz F., Morgenroth L., Ulin V., Berkovitz V., Lemaître A., Gomez C., Amo A., Combrié S., Gérard B., Leo G., and Favero I. Surface-enhanced gallium arsenide photonic resonator with quality factor of 6 × 106, Optica, 2017. Vol. 4. P. 218.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic of a quantum node that implements a two-qubit CNOT operation on photonic qubits. The controlling (controlled) qubit is represented by two waveguides, each supporting a single mode with x(y) polarisation. Their interaction energies J0, x(y) are assumed to be small. The quantum points of QT A and QT B are located at the mode bunches Ex(y),1 and Ex(y),2 of the microresonators MR 1 and MR 2. Both MRs exchange photons with each other, the waveguides of the controlled qubit and the waveguide of the controlling qubit with velocities J, Jy and Jx, respectively. The electronic transitions between g and px(y) states in each of the CTs are indirectly coupled to the corresponding waveguide modes through the MRs. Direct energy exchange between the CTs occurs under the influence of the Ferster interaction with the rate ΩF

Download (273KB)
3. Fig. 2. Time dependence plots of the population dependences of the ground states for the scheme of indirect photon transfer between the waveguides of the controlled qubit through CT A. The undesirable effect of direct photon tunnelling with small (a) and intermediate (b) J velocities is taken into account. All parameters are given in units of the frequency of the optical transition in CTs

Download (1MB)
4. Fig. 3. Time dependence plots of the population dependences of the basis states for the scheme of indirect photon transfer between waveguides through CT A with regard to small (a) and large (b) detunings of the subsystem frequencies. A weak direct tunnelling coupling between the single-photon states of the modes is assumed. All parameters are given in units of the frequency of the optical transition in CTs

Download (948KB)
5. Fig. 4. Time dependence plots of the population dependences of the ground states for the scheme of indirect photon transfer between waveguides through DCTs in resonant (a) and non-resonant (b) modes. A strong Förster coupling between the one-electron states of the CTs is assumed. All parameters are given in units of the frequency of the optical transition in CTs

Download (760KB)
6. Fig. 5. Plots of the two-dimensional electric field distribution of two waveguides with thickness h = 1.77 μm and width b = 1.7 μm at L = 9.5 μm (top) and b = 3 μm at L = 8.5 μm (bottom) for odd (left) and even (right) x-modes. The horizontal lines indicate the boundaries of the waveguides

Download (1MB)
7. Fig. 6. Plots of dependences of the optical interaction coefficient J of two waveguides with thickness h = 1.77 μm on the distance L between them at different values of the width b for the x-mode (a) and y-mode (b)

Download (231KB)
8. Fig. 7. Plots of the two-dimensional electric field distribution of the x-mode of a system consisting of a microdisk with radius R and a waveguide with width b. The waveguide is at a distance d from the microdisk. Top: R = 30 µm, b = 3 µm, d = 6.5 µm, bottom: R = 27 µm, b = 1.9 µm, d = 8 µm

Download (731KB)
9. Fig. 8. Plots of dependences of the maximum value of Ex of the single-photon electric field for x-mode MR on the distance d between the waveguide and the microdisk for a thin waveguide (a) and a moderate-width waveguide (b)

Download (361KB)
10. Fig. 9. Plots of dependences of the emissivity of the microdisk for the x-mode at R = 30 μm, h = 1.77 μm (a) and for the y-mode at R = 27 μm, h = 1.89 μm (b) on the distance d between the waveguide and the microdisk at different values of the waveguide width b

Download (270KB)

Copyright (c) 2024 Russian Academy of Sciences