Оптимизация систем протонного инжектора компактного нейтронного источника DARIA

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Настоящая статья посвящена усовершенствованию магнитной ловушки и системы формирования пучка электронного циклотронного резонансного ионного источника GISMO для его применения в качестве протонного инжектора – составной части линейного ускорителя компактного источника нейтронов. Была разработана открытая магнитная ловушка, состоящая из постоянных магнитов (на основе сплава Nd–Fe–B). Она адаптирована для более технологичного размещения системы экстракции в части плазменной камеры с большим внутренним диаметром по сравнению с источником GISMO. Затем была проведена оптимизация трехэлектродной системы формирования пучка. Показано, что при проектных параметрах системы возможно эффективное использование дополнительной магнитной линзы в виде соленоида для получения на выходе протонного пучка с малым углом расходимости. В результате численного моделирования была показана возможность использования данной магнитной ловушки и системы экстракции в составе протонного инжектора для проекта DARIA. Обсуждены следующие шаги в построении протонного источника.

Об авторах

С. С. Выбин

Федеральный исследовательский центр Институт прикладной физики РАН

Автор, ответственный за переписку.
Email: vybinss@ipfran.ru
Россия, 603950, Нижний Новгород

И. В. Изотов

Федеральный исследовательский центр Институт прикладной физики РАН

Email: vybinss@ipfran.ru
Россия, 603950, Нижний Новгород

Е. А. Миронов

Федеральный исследовательский центр Институт прикладной физики РАН

Email: vybinss@ipfran.ru
Россия, 603950, Нижний Новгород

О. В. Палашов

Федеральный исследовательский центр Институт прикладной физики РАН

Email: vybinss@ipfran.ru
Россия, 603950, Нижний Новгород

В. А. Скалыга

Федеральный исследовательский центр Институт прикладной физики РАН

Email: vybinss@ipfran.ru
Россия, 603950, Нижний Новгород

Список литературы

  1. Geller R. Electron Cyclotron Resonance Ion Sources and ECR Plasmas. Institute of Physics. Bristol, 1996. P. 434.
  2. Geller R. // IEEE Transactions on Nuclear Science. 1976. V. 23. № 2. P. 904. https://www.doi.org/10.1109/TNS.1976.4328376
  3. Sortais P., Lamy T., Médard J., Angot J., Latrasse L., Thuillier T. // Rev. Sci. Instrum. 2010. V. 81. № 2. P. 02B314. https://www.doi.org/10.1063/1.3272878
  4. Skalyga V.A., Golubev S.V., Izotov I.V., Lapin R.L., Razin S.V., Sidorov A.V., Shaposhnikov R.A. // Plasma Phys. Rep. 2019. V. 45. № 10. P. 984. https://www.doi.org/10.1134/S1063780X19080087
  5. Geller R. // Annual Rev. Nucl. Particle Sci. 1990. V. 40. № 1. P. 15. https://www.doi.org/10.1146/annurev.ns.40.120190. 000311
  6. Lyneis Claude M., Leitner D., Todd D.S., Sabbi G., Prestemon S., Caspi S., Ferracin P. // Rev. Sci. Instrum. 2008. V. 79. № 2. P. 02A321. https://www.doi.org/10.1063/1.2816793
  7. Benitez J.Y., Franzen K.Y., Hodgkinson A., Loew T., Lyneis C.M., Phair L., Saba J., Strohmeier M., Tarvainen O. // Rev. Sci. Instrum. 2012. V. 83. № 2. P. 02A311. https://www.doi.org/10.1063/1.3662119
  8. Sun L., Zhang W.H., Fang X., Guo J.W., Wu W., Feng Y.C., Zhang X.Z., Ma Y.M., Ma H.Y., Shen Z., Yang T.J., Yang Y., Zhao B., Zhao H.W., Ma L.Z. // Proceedings of ECRIS2016, Busan, Korea, 2016. P. 43.
  9. Sun L., Lu W., Zhao H.W., Guo J.W., Wu W., Wu B. M., Ou X.J., Mei E.M., Zheng S.J., Zhang X.Z., Li L.B., Zhu L., Xin C.J., Guan M.Z., Chen Y.Q., Wang X.D. // J. Phys.: Conf. Ser. 2022. V. 2244. № 1. P. 012021. https://www.doi.org/10.1088/1742-6596/2244/1/012021
  10. Wu W., Peng Sh., Ma T., Ren H., Zhang J., Zhang T., Jiang Y., Li K., Xu Y., Zhang A., Wen J., Guo Z., Chen J. // Rev. Sci. Instrum. 2019. V. 90. № 10. P. 101501. https://www.doi.org/10.1063/1.5109240
  11. Gammino S., Celona L., Ciavola G., Maimone F., Mascali D. // Rev. Sci. Instrum. 2010. V. 81. № 2. P. 02B313. https://www.doi.org/10.1063/1.3266145
  12. Pham A.N., Leitner D., Glennon P., Ottarson J., Lawton D., Portillo M., Machicoane G., Wenstrom J., Lajoie A. // Nucl. Instrum. Methods Phys. Res. B. V. 376. P. 77. https://www.doi.org/10.1016/j.nimb.2016.02.016
  13. Skalyga V.A., Izotov I.V., Shalashov A.G., Gospodchikov E.D., Kiseleva E.M., Tarvainen O., Koivisto H., Toivanen V. // J. Phys. D: Appl. Phys. 2021. V. 54. № 38. P. 385201. https://www.doi.org/10.1088/1361-6463/ac0e59
  14. Denisov G.G., Glyavin M.Yu., Tsvetkov A.I., Eremeev A.G., Kholoptsev V.V., Plotnikov I.V., Bykov Y.V., Orlov V.B., Morozkin M.V., Shmelev M.Yu, Kopelovich E.A., Troitsky M.M., Kuznetsov M.V., Zhurin K.A., Novikov A.Yu., Bakulin M.I., Sobolev D.I., Tai E.M., Soluyanova E.A., Sokolov E.V. // IEEE Transactions on Electron Devices. 2018. V. 65. № 9. P. 3963. https://www.doi.org/10.1109/TED.2018.2859274
  15. Thumm M.K.A., Denisov G.G., Sakamoto K., Tran M.Q. // Nucl. Fusion. 2019. V. 59. № 7. P. 073001. https://www.doi.org/10.1088/1741-4326/ab2005
  16. Idehara T., Sabchevski S.P., Glyavin M., Mitsudo S. // Appl. Sci. 2020. V. 10. № 3. P. 980. https://www.doi.org/10.3390/app10030980
  17. Mathew J.V., Bhattacharjee S. // Rev. Sci. Instrum. 2011. V. 82. № 1. P. 013501. https://www.doi.org/10.1063/1.3514989
  18. Bekhterev V., Bogomolov S., Efremov A. // Proceedings of HIAT2015, Yokohama, Japan, 2015. P. 238.
  19. Kalvas T., Tarvainen O., Toivanen V., Koivisto H. // J. Instrumentation. 2020. V. 15. № 6. P. P06016. https://www.doi.org/10.1088/1748-0221/15/06/p06016
  20. Skalyga V., Izotov I., Razin S., Sidorov A., Golubev S., Kalvas T., Koivisto H., Tarvainen O. // Rev. Sci. Instrum. 2014. V. 85. № 2. P. 02A702. https://www.doi.org/10.1063/1.4825074
  21. Bilheux H. // AIP Conference Proceedings. 2003. V. 680. № 1. P. 1058. https://www.doi.org/10.1063/1.1619890
  22. Bokhanov A.F., Zorin V.G., Izotov I.V., Razin S.V., Sidorov A.V., Skalyga V.A. // Plasma Phys. Rep. 2007. V. 33. № 5. P. 347. https://www.doi.org/10.1134/s1063780x07050017
  23. Shirkov G.D. // Plasma Sources Sci. Technol. 1993. V. 2. № 4. P. 250. https://www.doi.org/10.1088/0963-0252/2/4/004
  24. Skalyga V.A., Izotov I.V., Golubev S.V., Razin S.V., Sidorov A.V., Viktorov M.E. // Rev. Sci. Instrum. 2022. V. 93. № 3. P. 033502. https://www.doi.org/10.1063/5.0075486
  25. Skalyga V., Izotov I., Golubev S., Sidorov A., Razin S., Vodopyanov A., Tarvainen O., Koivisto H., Kalvas T. // Rev. Sci. Instrum. 2016. V. 87. № 2. P. 02A716. https://www.doi.org/10.1063/1.4934213
  26. Skalyga V.A., Izotov I.V., Sidorov A.V., Golubev S.V., Razin S.V. // Rev. Sci. Instrum. 2017. V. 88. № 3. P. 033503. https://www.doi.org/10.1063/1.4978278
  27. Sidorov A., Dorf M., Zorin V., Bokhanov A., Izotov I., Razin S., Skalyga V., Roßbach J., Spädtke P., Balabaev A. // Rev. Sci. Instrum. 2008. V. 79. № 2. P. 02A317. https://www.doi.org/10.1063/1.2805640
  28. Lapin R.L., Skalyga V.A., Izotov I.V., Golubev S.V., Razin S.V., Bokhanov A.F., Kazakov M.Yu., Shaposhnikov R.A., Kiseleva E.M., Tarvainen O. // J. Phys.: Conf. Ser. 2020. V. 1647. № 1. P. 012012. https://www.doi.org/10.1088/1742-6596/1647/1/012012
  29. Lapin R.L., Skalyga V.A., Golubev S.V., Izotov I.V., Razin S.V., Tarvainen O. // J. Appl. Phys. 2022. V. 131. № 9. P. 093301. https://www.doi.org/10.1063/5.0074388
  30. Skalyga V.A., Golubev S.V., Izotov I.V., Shaposhnikov R.A., Razin S.V., Sidorov A.V., Bokhanov A.F., Kazakov M.Yu., Lapin R.L., Vybin S.S. // Rev. Sci. Instrum. 2019. V. 90. № 12. P. 123511.
  31. Skalyga V., Izotov I., Golubev S., Sidorov A., Razin S., Strelkov A., Tarvainen O., Koivisto H., Kalvas T. // J. Appl. Phys. 2015. V. 118. № 9. P. 093301. https://www.doi.org/10.1063/1.4929955
  32. Golubev S.V., Skalyga V.A., Izotov I.V., Sidorov A.V., Razin S.V., Shaposhnikov R.A., Lapin R.L., Bokhanov A.F., Kazakov M.Yu. // J. Instrumentation. 2019. V. 14. № 01. P. C01007. https://www.doi.org/10.1088/1748-0221/14/01/c01007
  33. Golubev S.V., Skalyga V.A., Izotov I.V., Razin S.V., Shaposhnikov R.A., Vybin S.S., Bokhanov A.F., Kazakov M.Yu., Shlepnev S.P., Burdonov K.F., Soloviev A.A., Starodubtsev M.V. // J. Instrumentation. 2021. V. 16. № 2. P. T02008. https://www.doi.org/10.1088/1748-0221/16/02/t02008
  34. Skalyga V.A., Bokhanov A.F., Golubev S.V., Izotov I.V., Kazakov M.Yu., Kiseleva E.M., Lapin R.L., Razin S.V., Shaposhnikov R.A., Vybin S.S. // Rev. Sci. Instrum. 2019. V. 90. № 12. P. 123308. https://www.doi.org/10.1063/1.5128489
  35. Skalyga V.A., Izotov I.V., Mironov E.A., Voitovich A.V., Palashov O.V. // AIP Conference Proceedings. 2016. V. 1771. № 1. P. 070014-1. https://www.doi.org/10.1063/1.4964238
  36. Knaster J., Garin P., Matsumoto H., Okumura Y., Sugimoto M., Arbeiter F., Cara P., Chel S., Facco A., Favuzza P., Furukawa T., Heidinger R., Ibarra A., Kanemura T., Kasugai A., Kondo H., Massaut V., Molla J., Micciche G., O’hira S., Sakamoto K., Yokomine T., Wakai E. // Nuclear Fusion. 2017. V. 57. № 10. P. 102016. https://www.doi.org/10.1088/1741-4326/aa6a6a
  37. Mardor I., Aviv O., Avrigeanu M., Berkovits D., Dahan A., Dickel T., Eliyahu I., Gai M., Gavish-Segev I., Halfon S., Hass M., Hirsh T., Kaiser B., Kijel D., Kreisel A., Mishnayot Y., Mukul I., Ohayon B., Paul M., Perry A., Rahangdale H., Rodnizki J., Ron G., Sasson-Zukran R., Shor A., Silverman I., Tessler M., Vaintraub S., Weissman L. // Europ. Phys. J. A. 2018. V. 54. № 5. https://www.doi.org/10.1140/epja/i2018-12526-2
  38. Schweizer W., Ratzinger U., Klump B., Volk K. // Rev. Sci. Instrum. 2014. V. 85. № 2. P. 02A743. https://www.doi.org/10.1063/1.4842335
  39. Pisent A., Fagotti E., Colautti P. // Proceedings of LINAC2014, Geneva, Switzerland. 2014. P. 261–263.
  40. Kropachev G., Kulevoy T., Sitnikov A. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2019. V. 13. № 6. P. 1126. https://www.doi.org/10.1134/s1027451019060399
  41. Izotov I., Skalyga V., Razin S., Sidorov A., Golubev S., Kalvas T., Koivisto H., Tarvainen O. // Proceedings of IPAC2014, Dresden, Germany, 2014. P. 604. https://www.doi.org/10.18429/JACoW-IPAC2014-MOPRI012
  42. Barabin S.V., Kropachev G.N., Lukashin A.Yu., Kulevoy T.V., Vybin S.S., Golubev S.V., Izotov I.V., Kiseleva E.M., Skalyga V.A., Grigoriev S.V., Kovalenko N.A. // Technical Phys. Lett. 2021. V. 47. № 7. P. 485. https://www.doi.org/10.1134/s1063785021050199
  43. Kalvas T., Tarvainen O., Ropponen T., Steczkiewicz O., Ärje J., Clark H. // Rev. Sci. Instrum. 2010. V. 81. № 2. P. 02B703. https://www.doi.org/10.1063/1.3258608
  44. Ferdinand R., Sherman J., Stevens R.R., Zaugg T. // Proceedings of the 1997 Particle Accelerator Conference. 1997. V. 3. P. 2723. https://www.doi.org/10.1109/PAC.1997.752744
  45. Chauvin N., Delferrière O., Duperrier R., Gobin R., Nghiem P.A.P., Uriot D. // Rev. Sci. Instrum. 2012. V. 83. № 2. P. 02B320. https://www.doi.org/10.1063/1.3678658

© С.С. Выбин, И.В. Изотов, Е.А. Миронов, О.В. Палашов, В.А. Скалыга, 2023