Behavior Features of the Approach Curve of a Scanning Ion-Conductance Microscope

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The operation of a scanning ion-conductance microscope is based on the assumption that the ion current I(z) flowing in an electrolyte solution through the narrow aperture of a probe in the form of a glass nanopipette has a maximum saturation value away from the sample under study and decreases as the probe approaches the surface. The value of the scanning ion-conductance microscope operating current is usually chosen near the saturation current I ~ 09Isat. However, in some cases there is an unusual behavior of the I(z) approach curve near the surface when the ion current increases as the nanopipette approaches the sample surface. The appearance of a peak on the I(z) curve as the nanopipette approaches the sample surface is what we call the “peak effect”. It is obvious that the peak effect can lead to a failure in the operation of the scanning ion-conductance microscope servo system and noise at the images getting by scanning ion-conductance microscope. In this work the appearance of a peak on the approach curve have been studied experimentally. Considering the nanopipette near the sample surface as a microfluidic system in the form of a T – shaped channel the I(z) dependence using the finite element method and the СOMSOL software package have been calculated.

作者简介

S. Lukashenko

IAI RAS

编辑信件的主要联系方式.
Email: stas.lukashenko@mail.ru
Russia, 198095, Saint-Petersburg

O. Gorbenko

IAI RAS

编辑信件的主要联系方式.
Email: gorolga64@gmail.com
Russia, 198095, Saint-Petersburg

M. Zhukov

IAI RAS

Email: aogolubok@mail.ru
Russia, 198095, Saint-Petersburg

S. Pichahchi

IAI RAS

Email: aogolubok@mail.ru
Russia, 198095, Saint-Petersburg

I. Sapozhnikov

IAI RAS

Email: aogolubok@mail.ru
Russia, 198095, Saint-Petersburg

M. Felshtyn

IAI RAS

Email: aogolubok@mail.ru
Russia, 198095, Saint-Petersburg

A. Golubok

IAI RAS

编辑信件的主要联系方式.
Email: aogolubok@mail.ru
Russia, 198095, Saint-Petersburg

参考

  1. Hansma P.K., Drake B., Marti O., Gould S.A., Prater S.B. // Science 1989. V. 243. P. 641. https://www.doi.org/10.1126/science.2464851
  2. Shevchuk A.I., Frolenkov G.I., Sanchez D., James P.S., Freedman N., Lab M.J., Jones R., Klenerman D., Korchev Y.E. // Angew. Chem. Int. Ed. 2006. V. 45. P. 2212. https://www.doi.org/10.1002/anie.200503915
  3. Макарова Е.С., Яминский И.В. // Медицина и высокие технологии 2016. Т. 1. С. 39.
  4. Яминский И.В., Ахметова А.И., Советников Т.О., Тихомирова М.А., Янг Ш. // Наноиндустрия 2022. Т. 15. № 3. С. 168. https://www.doi.org/10.22184/1993-8578.2022.15.3-4.168.173
  5. Comstock D.J., Elam J.W., Pellin M.J., Hersam M.C. // Anal. Chem. 2010. V. 82. P. 1270. https://www.doi.org/10.1021/ac902224q
  6. Rodolfa K.T., Bruckbauer A., Zhou D., Korchev Y.E., Klenerman D. // Angew. Chem. Int. Ed. 2005. T. 44. P. 6854. https://www.doi.org/10.1002/anie.200502338
  7. Momotenko D., Page A., Adobes-Vidal M., Unwin P.R. // ACS Nano V. 10. P. 8871. https://www.doi.org/10.1021/acsnano.6b04761
  8. Shevchuk A.I., Hobson P., Lab M.J., Klenerman D., Krauzewicz N., Korchev Y.E. // Pflugers Arch. Eur. J. Physiol. 2008. V. 456. P. 227. https://www.doi.org/10.1007/s00424-007-0410-4
  9. Dorwling-Carter L., Aramesh M., Han H., Zambelli T., Momotenko D. // Anal. Chem. 2018. V. 90. P. 19.
  10. Thatenhorst D., Rheinlaender J., Schaffer T.E., Dietzel I.D., Happel P. // Anal. Chem. 2014. V. 86. P. 9838.
  11. Rheinlaender J., Schäffer T.E. // Anal. Chem. 2017. V. 89. P. 11875. https://www.doi.org/10.1021/acs.analchem.7b03871
  12. Wei C., Bard A.J., Feldberg S.W. // Anal. Chem. 1997. V. 69. P. 4627. https://www.doi.org/10.1021/ac970551g
  13. Chen C-C., Zhou Y., Baker L.A. // Annu. Rev. Anal. Chem. 2012. V. 5. P. 207. https://www.doi.org/10.1146/annurev-anchem-062011- 143203
  14. Chen C-C., Bake L.A. // Analyst 2011. V. 136. P. 90. https://www.doi.org/10.1039/C0An00604A
  15. Novak P. et al. // Nat. Methods 2009. V. 6. P. 279. https://www.doi.org/10.1038/nmeth.1306
  16. Sa N., Baker L.A. // J. Am. Chem. Soc. 2011. V. 133. P. 10398. https://www.doi.org/10.1021/ja203883q
  17. McKelvey K., Kinnear S.L., Perry D., Momotenko D., Unwin P.R. // J. Am. Chem. Soc. 2014. V. 136. P. 13. https://www.doi.org/10.1021/la5020412
  18. Yingfei M., Rujia L., Xiaoyue S., Dengchao W. // Chem. Electrochem. 2021. V. 8. P. 3917. https://www.doi.org/10.1002/celc.202101180
  19. Sa N., Lan W.J., Shi W., Baker L.A. // ACS Nano 2013. V. 7. №. 11. P. 272. https://www.doi.org/10.1021/nn4050485.
  20. Clarke R.W., Zhukov A., Richards O., Johnson N., Ostanin V., Klenerman D. // American Chem. Soc. 2012. https://www.doi.org/10.1021/ja3094586
  21. Zhukov M.V., Lukashenko S.Yu., Sapozhnikov I.D., Felshtyn M.L., Gorbenko O.M., Golubok A.O. // J. Phys.: Conf. Ser. 2021. V. 2086. https://www.doi.org/10.1088/1742-6596/2086/1/012074
  22. Zhang L., Biesheuve P.M., Ryzhkov I.I. // Phys. Rev. Appl. 2019. V. 12. P. 014039. https://www.doi.org/10.1103/PhysRevApplied.12.014039
  23. Bannard J.E. // J. Appl. Electrochem. 1975. V. 5. P. 43. https://www.doi.org/10.1007/BF00625958

补充文件

附件文件
动作
1. JATS XML
2.

下载 (456KB)
3.

下载 (286KB)
4.

下载 (53KB)
5.

下载 (161KB)
6.

下载 (142KB)
7.

下载 (40KB)
8.

下载 (34KB)
9.

下载 (92KB)

版权所有 © С.Ю. Лукашенко, О.М. Горбенко, М.В. Жуков, С.В. Пичахчи, И.Д. Сапожников, М.Л. Фельштын, А.О. Голубок, 2023