Скользящее взаимодействие пучков ускоренных протонов с искривленной диэлектрической поверхностью

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Работа направлена на продолжение исследования эффекта “гайдинга” в различных аспектах. Благодаря этому эффекту возможно организовать бесконтактное прохождение пучков ускоренных заряженных частиц вдоль диэлектрической поверхности. В частности, при взаимодействии с диэлектрической пластиной эффект гайдинга обеспечивает прохождение пучков протонов без ионизационных потерь энергии. Проведен эксперимент по скользящему взаимодействию пучков ускоренных протонов с искривленной диэлектрической стенкой, в котором пучки протонов прижимались к поверхности стенки внешним электрическим полем. Для пучков, испытавших такое взаимодействие, проводили измерения энергетического спектра. Сравнение энергетических спектров исходного пучка и пучка, прошедшего в скользящем режиме вдоль искривленной диэлектрической стенки, показало, что в этом взаимодействии так же, как и при скольжении вдоль плоской диэлектрической стенки, пучки протонов не испытывают ионизационных потерь энергии.

Об авторах

Л. А. Жиляков

Московский государственный университет им. М.В. Ломоносова,
НИИЯФ им. Д.В. Скобельцына

Автор, ответственный за переписку.
Email: zhiliakovla@mail.ru
Россия, 119991, Москва

В. С. Куликаускас

Московский государственный университет им. М.В. Ломоносова,
НИИЯФ им. Д.В. Скобельцына

Email: zhiliakovla@mail.ru
Россия, 119991, Москва

Список литературы

  1. Stolterfoht N., Bremer J.-H., Hoffmann V., Hellhammer R., Fink D., Petrov A., Sulik B. // Phys. Rev. Lett. 2002. V. 88. P. 133201. https://doi.org./10.1103/PhysRevLett.88.133201
  2. Жиляков Л.А., Костановский А.В., Иферов Г.А., Куликаускас В.С., Похил Г.П., Швей И.В. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2002. № 11. С. 65.
  3. Stolterfoht N., Hoffmann V., Hellhammera R., Pesica Z.D., Finka D., Petrova A., Sulikab B. // Nucl. Instrum. Methods Phys. Res. B. 2003. V. 203. P. 246. https://doi.org./10.1016/S0168-583X(02)02224-3
  4. Sahana M.B., Skog P., Vikor Gy., Kumar R.T.R., Schuch R. // Phys. Rev. A. 2006. V. 73. P. 040901. https://doi.org./10.1103/PhysRevA.73.04090
  5. Вохмянина К.А., Жиляков Л.А., Похил Г.П. // Изв. РАН. Сер. физ. 2006. Т. 70. № 6. С. 828.
  6. Vokhmyanina K.A., Zhilyakov L.A., Kostanovsky A.V., Kulikauskas V.S., Petukhov V.P., Pokhil G.P. // J. Phys. A. 2006. V. 39. P. 4775.
  7. Stolterfoht N. // Phys. Rev. A. 2013. V. 87. P. 032901. https://doi.org./10.1103/PhysRevA.87.032901
  8. Lemella C., Burgdörfera J., Aumayrb F. // Prog. Surf. Sci. 2013. V. 88. № 3. P. 237. https://doi.org./10.1016/j.progsurf.2013.06.001
  9. Víkora Gy., Rajendrakumara R.T., Pešib Z.D., Stolterfoht N., Schucha R. // Nucl. Instrum. Methods Phys. Res. B. 2005. V. 233. P. 218. https://doi.org./10.1016/j.nimb.2005.03.109
  10. Matefi-Tempfli S., Matefi-Tempfli M., Piraux L., Juhasz Z., Biri S., Fekete E., Ivan I., Gall F., Sulik B., Vıkor Gy., Palinkas J., Stolterfoht N. // Nanotechnology. 2006. V. 17. P. 3915. https://doi.org./10.1088/0957-4484/17/15/050
  11. Fursatz M., Meissl W., Pleschko S., Gebeshuber I.C., Stolterfoht N., Winter H.P., Aumayr F. // J. Phys.: Conf. Ser. 2007. V. 58. P. 319. https://doi.org./10.1088/1742-6596/58/1/071
  12. Skog P., Soroka I.L., Johansson A., Schuch R. // Nucl. Instrum. Methods Phys. Res. B. 2007. V. 258. P. 145. https://doi.org./10.1016/j.nimb.2006.12.127
  13. Juhasz Z., Sulik B., Biri I.S., Tokesi K., Fekete E., Matefi-Tempflic S., Matefi-Tempflic M., Víkor G., Takacs E., Palinkas J. // Nucl. Instrum. Methods Phys. Res. B. 2009. V. 267. P. 321. https://doi.org./10.1016/j.nimb.2008.10.017
  14. Li D.H., Wang Y.Y., Zhao Y.T., Xiao G.Q., Zhao D., Xu Z.F., Li F.L. // Nucl. Instrum. Methods Phys. Res. B. 2009. V. 267. P. 469. https://doi.org./10.1016/j.nimb.2008.11.041
  15. Nebiki T., Yamamoto T., Narusawa T., Breese M.B.H., Teo E.J., Watt F. // J. Vac. Sci. Technol. A. V. 21. № 5. P. 1671. https://doi.org./10.1116/1.1597889
  16. Hasegawa J., Shiba S., Fukuda H., Oguri Y. // Nucl. Instrum. Methods Phys. Res. B. 2008. V. 266. P. 2125. https://doi.org./10.1016/j.nimb.2008.02.051
  17. Sekiba D., Yonemura H., Nebiki T., Wilde M., Oguraae S., Yamashita H., Matsumoto M., Kasagi J., Iwamura Y., Itoh T., Matsuzaki H., Narusawa T., Fukutani K. // Nucl. Instrum. Methods Phys. Res. B. 2008. V. 266. P. 4027. https://doi.org./10.1016/j.nimb.2008.06.032
  18. Iwai Y., Ikeda T., Kojima T.M., Yamazaki Y., Maeshima K., Imamoto N., Kobayashi C.T., Nebiki T., Narusawa T., Pokhil G.P. // Appl. Phys. Lett. 2008. V. 92. P. 023509 https://doi.org./10.1063/1.2834695
  19. Nebiki T., Yamamoto T., Narusawa T., Breese M.B.H., Teo E.J., Watt F. // J. Vac. Sci. Technol. A. 2003. V. 21. P. 1671. https://doi.org./10.1116/1.1597889
  20. Wickramarachchi S.J., Dassanayake B.S., Keerthisinghe D., Ayyad A., Tanis J.A. // Nucl. Instrum. Methods Phys. Res. B. 2011. V. 269. P. 1248. https://doi.org./10.1016/j.nimb.2010.11.089
  21. Wang W., Chen J., Yu D.Y., Yang B., Wu Y.H., Zhang M.W., Ruan F.F., Cai X.H. // Phys. Scripta. 2011. V. 144. P. 014023. https://doi.org./10.1088/0031-8949/2011/T144/014023
  22. Gong Z., Yan S., Ma H., Nie R., Xue J., Wang Y. // Nucl. Instrum. Methods Phys. Res. B. 2012. V. 272. P. 370. https://doi.org./10.1016/j.nimb.2011.01.103
  23. Kojima T.M., Ikeda T., Kanai Y., Yamazaki Y., Esaulov V.A. // J. Phys. D. 2011. V. 44. P. 355201. https://doi.org./10.1088/0022-3727/44/35/355201
  24. Kojima T.M., Ikeda T., Kanaia Y., Yamazaki Y. // Nucl. Instrum. Methods Phys. Res. B. 2015. V. 354. P. 16. https://doi.org./10.1016/j.nimb.2014.11.031
  25. Жиляков Л.А., Куликаускас В.С. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 6. С. 71. https://doi.org./10.31857/S1028096022060188
  26. Черняев А.П. Взаимодействие ионизирующего излучения с веществом. М.: Физматлит, 2004. 152 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (153KB)
3.

Скачать (119KB)

© Л.А. Жиляков, В.С. Куликаускас, 2023