Структура поверхностных ступенек в деформированном аморфном сплаве Zr62Cu22Fe6Al10

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методами рентгенографии и растровой электронной микроскопии исследована структура боковых поверхностей образцов массивного аморфного сплава Zr62Cu22Fe6Al10 до и после деформации сжатием при комнатной температуре. Образцы аморфного сплава после получения имели квадратное сечение 5×5 мм и длину 40 мм. Исследование морфологии боковых поверхностей образцов проводили с целью избежать влияния на структуру образцов поверхности инструмента, используемого при деформации. Пластическая деформация аморфных сплавов происходит путем образования и распространения полос сдвига. При деформации сжатием при комнатной температуре на торцевых поверхностях образца сформировалась система ступенек, вызванная выходом на поверхность полос сдвига. Ступеньки на поверхностях имеют разные размеры (толщину и высоту). Установлено, что структура больших ступенек сложная: они состоят из элементарных ступенек толщиной 15–30 нм. По величине ступенек оценена локальная деформация образцов. Обнаружено образование при деформации малого количества нанокристаллов. Кристаллы имеют размеры приблизительно 10 нм. Полученные результаты открывают новое направление исследований структуры деформированных аморфных сплавов и процессов нанокристаллизации под действием деформации.

Об авторах

Г. Е. Абросимова

Институт физики твердого тела им. Ю.А. Осипьяна РАН

Email: aronin@issp.ac.ru
Россия, Черноголовка

Н. А. Волков

Институт физики твердого тела им. Ю.А. Осипьяна РАН

Email: aronin@issp.ac.ru
Россия, Черноголовка

А. С. Аронин

Институт физики твердого тела им. Ю.А. Осипьяна РАН

Автор, ответственный за переписку.
Email: aronin@issp.ac.ru
Россия, Черноголовка

Список литературы

  1. Greer A.L., Cheng Y.Q., Ma, E. // Mater. Sci. Eng. R Rep. 2013. V. 74. P. 71. https://www.doi.org/10.1016/j.mser.2013.04.001
  2. Boucharat N., Hebert R., Rösner H., Valiev R., Wilde G. // Scr. Mater.2005. V. 53. P. 823. https://www.doi.org/10.1016/j.scriptamat.2005.06.004
  3. Ma G.Z., Song K.K., Sun B.A., Yan Z.J., Kühn U., Chen D., Eckert J. // J. Mater. Sci.2013. V. 48. P.6825. https://www.doi.org/10.1007/s10853-013-7488-1.
  4. Maaß R., Löffler J.F. // Adv. Funct. Materials.2015. V. 25. P. 2353. https://www.doi.org/10.1002/adfm.201404223
  5. Şopu D., Scudino S., Bian X.L., Gammer C., Eckert, J. // Scr. Mater.2020. V. 178. P. 57. https://www.doi.org/10.1016/j.scriptamat.2019.11.006
  6. Hebert R.J., Boucharat N., Perepezko J.H., Rösner H., Wilde G. // J. Alloys Compd. 2007. V. 434-435. P. 18. https://www.doi.org/10.1016/j.jallcom.2006.08.134
  7. Aronin A.S., Louzguine-Luzgin D.V. // Mech. Mater. 2017. V. 113. P. 19. https://www.doi.org/10.1016/j.mechmat.2017.07.007
  8. Hassanpour A., Vaidya M., Divinski S.V., Wilde G. // Acta Mater. 2021. V. 209. P. 116785. https://www.doi.org/10.1016/j.actamat.2021.116785
  9. Wilde G., Rösner H. // Appl. Phys. Lett. 2011. V. 98. P. 251904. https://doi.org/10.1063/1.3602315
  10. Kang S.J., Cao Q.P., Liu J., Tang Y., Wang X.D., Zhang D.X., Ahn I. S., Caron A., Jiang J.Z. // J. Alloys Compd. 2019. V. 795. P. 493. https://doi.org/10.1016/j.jallcom.2019.05.026
  11. Abrosimova G., Aronin A., Barkalov O., Matveev D., Rybchenko O., Maslov V., Tkatch V. // Phys. Solid State. 2011. V. 53. P. 229. https://www.doi.org/10.1134/S1063783411020028
  12. Rösner H., Peterlechner M., Kübel C., Schmidt V., Wilde G. // Ultramicroscopy. 2014. V. 142. P. 1. https://www.doi.org/10.1016/j.ultramic.2014.03.006
  13. Chen N., Frank R., Asao N., Louzguine-Luzgin D.V., Sharma P., Wang J.Q., Xie G.Q., Ishikawa Y., Hatakeyama N., Lin Y.C. // Acta Mater.2011. V. 59. P. 6433. https://www.doi.org/10.1016/j.actamat.2011.07.007.
  14. Pan J., Chen Q., Liu L., Li Y. // Acta Mater.2011. V. 59. P. 5146. https://www.doi.org/10.1016/j.actamat.2011.04.047.
  15. Liu C., Roddatis V., Kenesei P., Maaß R. // Acta Mater.2017. V. 140. P. 206. https://www.doi.org/10.1016/j.actamat.2017.08.032
  16. Maaß R., Löffler J.F. // Adv. Funct. Materials2015. V.25. P. 2353. https://www.doi.org/10.1002/adfm.201404223
  17. Chen Y.M., Ohkubo T., Mukai T., Hono K. // J. Mater. Res. 2009. V. 24. P. 1. https://doi.org/10.1557/jmr.2009.0001
  18. He J., Kaban I., Mattern N., Song K., Sun B., Zhao J., Kim D. H., Eckert J., Greer A. L. // Sci. Rep. 2016. V. 6. P.25832. https://www.doi.org/10.1038/srep25832.
  19. Mironchuk B., Abrosimova G., Bozhko S., Pershina E., Aronin A. // J. Non-Crystal. Solids. 2022. V. 577. P. 121279. https://www.doi.org/10.1016/j.jnoncrysol.2021.121279
  20. Aronin A.S., Aksenov O.I., Matveev D.V., Pershina E.A., Abrosimova G.E. // Mater. Lett. 2023. V. 344. P. 134478. https://www.doi.org/10.1016/j.matlet.2023.134478
  21. Aronin A.S., Volkov N.A., Pershina E.A. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2024. V.18. P. 27. https://www.doi.org/10.1134/S1027451024010051
  22. Абросимова Г.Е., Аронин А.С., Холстинина Н.Н. // ФТТ. 2010. Т. 52. Р. 417.
  23. Glezer А.M., Louzguine-Luzgin D.V., Khriplivets I.A., Sundeev R.V., Gunderov D.V., Bazlov A.I., Pogozhev Y.S. // Mater. Lett. 2019. V. 256. P. 126631. https://doi.org/10.1016/j.matlet.2019.12663
  24. Abrosimova G., Aksenov O., Volkov N., Matveev D., Pershina E., Aronin A. // Metals. 2024 V. 14. P. 771. https://doi.org/0.3390/met14070771

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024