Study of silicon dioxide sputtering by a focused gallium ion beam

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Test structures in the form of rectangular boxes fabricated on thermal silicon dioxide substrates under normal and oblique ion bombardment using the focused ion beam technique were studied by transmission electron microscopy and energy-dispersive X-ray microanalysis. The experimentally obtained depth distribution profiles for gallium atoms, as well as the sputtering yields, were compared with the results of Monte Carlo simulations. Calculations were carried out using standard continuous and discrete-continuous models for the surface binding energy of atoms in silicon dioxide. For the normal incidence of the ion beam, based on minimizing the value of the R-factor, which characterizes the agreement between the calculated and experimental data, the optimal values of the parameters of the discrete-continuous model were found, which turned out to be close to the values used in the continuous model. It is shown that the obtained parameters make it possible to simulate silicon dioxide sputtering with acceptable accuracy at ion beam incidence angles of 15° and 30°. However, at a grazing incidence angle of 80°, significant differences arise between the experimental and calculated profiles of the concentration of gallium atoms implanted in silicon dioxide.

作者简介

О. Podorozhniy

National Research University of Electronic Technology

编辑信件的主要联系方式.
Email: lemi@miee.ru
俄罗斯联邦, Zelenograd, Moscow

А. Rumyantsev

National Research University of Electronic Technology

Email: lemi@miee.ru
俄罗斯联邦, Zelenograd, Moscow

R. Volkov

National Research University of Electronic Technology

Email: lemi@miee.ru
俄罗斯联邦, Zelenograd, Moscow

N. Borgardt

National Research University of Electronic Technology

Email: lemi@miee.ru
俄罗斯联邦, Zelenograd, Moscow

参考

  1. Sloyan K., Melkonyan H., Dahlem M.S. // Int. J. Adv. Manuf. Technol. 2020. V. 107. P. 4469. https://doi.org./10.1007/s00170-020-05327-5
  2. Ribeiro R.S.R., Dahal P., Guerreiro A., Jorge P.A.S., Viegas J. // Sci. Rep. 2016. V. 7. P. 4485. https://doi.org./10.1038/s41598-017-04490-2
  3. Nayak K.P., Kien F.L., Kawai Y., Hakuta K., Nakajima K., Miyazaki H.T., Sugimoto Y. // Opt. Express. 2011. V. 19. № 15. P. 14040. https://doi.org./10.1364/OE.19.014040
  4. Cabrini S., Liberale C., Cojoc D., Carpentiero A., Prasciolu M., Mora S., Degiorgio V., De Angelis F., Di Fabrizio E. // Microelectron. Eng. 2006. V. 83. P. 804. https://doi.org./10.1016/j.mee.2006.01.247
  5. Berthelot J., Aćimović S.S., Juan M.L., Kreuzer M.P., Renger J., Quidant R. // Nat. Nanotechnol. 2014. V. 9. P. 295. https://doi.org./10.1038/NNANO.2014.24
  6. Mayer J., Giannuzzi L.A., Kamino T., Michael J. // MRS Bull. 2007. V. 32. № 5. P. 400. https://doi.org./10.1557/mrs2007.63
  7. Han Zh., Vehkamäki M., Leskelä M., Ritala M. // Nanotechnology. 2014. V. 25. P. 115302. https://doi.org./10.1088/0957-4484/25/11/115302
  8. Kim H. B., Hobler G., Steiger A., Lugstein A., Bertagnolli E., Platzgummer E., Loeschner H. // Int. J. Precis. Eng. Manuf. 2011. V. 12. P. 893. https://doi.org./10.1007/s12541-011-0119-3
  9. Alkemade P.F.A. // Phys. Rev. Lett. 2006. V. 96. P. 107602. https://doi.org./10.1103/PhysRevLett.96.107602
  10. Kim H.B. // Microelectron. Engin. 2011. V. 88. № 11. P. 3365. https://doi.org./10.1016/j.mee.2011.07.008
  11. Mahady K.T., Tan S., Greenzweig Y., Raveh A., Rack P.D. // Nanotechnology. 2018. V. 29. № 49. P. 495301. https://doi.org./10.1088/1361-6528/aae183
  12. Rumyantsev A.V., Borgardt N.I., Volkov R.L., Chaplygin Y.A. // Vacuum. 2022 202. P.111128. https://doi.org./10.1016/j.vacuum.2022.111128
  13. Seah M.P., Nunney T.S. // J. Phys. D. 2010. V. 43. № 25. P. 253001. https://doi.org./10.1088/0022-3727/43/25/253001
  14. Duan G., Xing T., Li Y. // AOMATT. SPIE. 2012. V. 8416. P. 585. https://doi.org.10.1117/12.973697
  15. Mutzke A., Schneider R., Eckstein W., Dohmen R., Schmid K., von Toissaint U., Bandelow G. SDTrimSP Version 6.00 IPP Report 2019-2, 2019. 91 p.
  16. Бачурин В.И., Кривелевич С.А., Потапов Е.В., Чурилов А.Б // Поверхность. Рентген. синхротр. и нейтрон. исслед. 2007. № 3. С. 19.
  17. Бачурин В.И., Изюмов М.О., Амиров И.И., Шуваев Н.О. // Изв. РАН. Сер. физ. 2018. Т. 82. № 2. С. 146. https://doi.org.10.7868/S0367676518020035
  18. Kudriavtsev Y., Villegas A., Godines A., Asomoza R. // Appl. Surf. Sci. 2005. V. 239. № 3–4. P. 273. https://doi.org.10.1016/j.apsusc.2004.06.014
  19. Румянцев А.В., Подорожний О.В., Волков Р.Л., Боргардт Н.И. // Изв. вузов. Электроника. 2023. Т. 28. № 5. С. 555. https://doi.org.10.24151/1561-5405-2023-28-5-555-568
  20. Румянцев А.В., Подорожний О.В., Волков Р.Л., Боргардт Н.И. // Изв. вузов. Электроника. 2022. Т. 27. № 4. С. 463. https://doi.org.10.24151/1561-5405-2022-27-4-463-474
  21. Mutzke A., Bandelow G., Schmid K. News in SDTrimSP Version 5.05, 2015. 46 p.
  22. El-Kareh B., Hutter L.N. Fundamentals of Semiconductor Processing Technology. New York: Springer Science & Business Media, 1995. 602 p. https://doi.org.10.1007/978-1-4615-2209-6
  23. Eckstein W. Computer Simulation of Ion-Solid Interactions. Berlin–Heidelberg: Springer, 2013. 296 p. https://doi.org.10.1007/978-3-642-73513-4
  24. Румянцев А.В., Боргардт Н.И., Волков Р.Л. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2018. № 6. С. 102. https://doi.org.10.7868/S0207352818060197
  25. Hofmann S., Thomas III J.H. // J. Vac. Sci. Technol. B. 1983. V. 1. № 1. P. 43. https://doi.org.10.1116/1.582540

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024