Theoretical study of electron exchange under grazing scattering on thin metal films

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Electron exchange during grazing scattering of hydrogen ions on thin metal films is considered. The main characteristic being studied is the yield fraction, i.e. the probability of the formation of a certain charge state of a scattered particle (in the case under consideration, H) as a function of the velocity component parallel to the surface of the sample. Based on an analysis of the electron distribution in the space of wave vectors, using the generally accepted model of displacement of Fermi spheres, it was shown that the dependence of the probability of the formation of a negative hydrogen ion on the parallel velocity component should decrease monotonically.

About the authors

I. K. Gainullin

Lomonosov Moscow State University

Author for correspondence.
Email: ivan.gainullin@physics.msu.ru
Russian Federation, Moscow

References

  1. Martynenko Yu. V. // Sov. Phys. Solid State. 1964. V. 3529. P. 2003.
  2. Yurasova V.E., Chernysh V.S., Kuvakin M.V., Shelyakin L.B. // JETP Lett. 1975. V. 21. № 3. P. 79.
  3. Xiao Y., Shi Y., Liu P., Zhu Y., Gao L., Guo Y., Chen L., Chen X., Esaulov V. // Nucl. Instrum. Methods Phys. Res. B. 2019. V. 450. P. 73. http://doi.org/10.1016/j.nimb.2018.11.022
  4. Mamedov N.V., Mamedov I.M. // Bull. Russ. Acad. Sci.: Phys. 2020. V. 84. P. 713. http://doi.org/10.3103/S1062873820060155
  5. Balakshin Y.V., Kozhemiako A.V., Evseev A.P., Minnebaev D.K., Elsehly E.M. // Moscow University Phys. Bull. 2020. V. 75. Р. 218. http://doi.org/10.3103/S0027134920030030
  6. Shemukhin A.A., Smirnov A.M., Evseev A.P., Vorobyeva E.A., Kozhemiako A.V., Minnebaev D.K., Balakshin Y.V., Nazarov A.V., Chernysh V.S. // Moscow University Phys. Bull. 2020. V. 75. P. 133. http://doi.org/10.3103/S0027134920020113
  7. Tolstogouzov A., Daolio S., Pagura C. // Surf. Sci. 1999. V. 441. P. 213. http://doi.org/10.1016/S0039-6028(99)00881-X
  8. Elovikov S.S., Zykova E.Yu., Mosunov A.S. et al. // Bull. Russ. Acad. Sci. Phys. 2002. V. 66. P. 558.
  9. Bogomolova L.D., Borisov A.M., Kurnaev V.A., Mashkova E.S. // Nucl. Instrum. Methods Phys. Res. B. 2003. V. 212. P. 164. http://doi.org/10.1016/S0168-583X(03)01730-0
  10. Zinoviev A.N., Babenko P.Y., Meluzova D.S., Shergin A.P. // JETP Lett. 2018. V. 108. P. 633. http://doi.org/10.1134/S0021364018210154
  11. Los J., Geerlings J.J.C. // Phys. Rep. 1990. V. 190. P. 133.
  12. Karaseov P.A., Karabeshkin K.V., Titov A.I., Shilov V.B., Ermolaeva G.M., Maslov V.G., Orlova A.O. // Semiconductors. 2014. V. 48. № 4. P. 446. http://doi.org/10.1134/S1063782614040125
  13. Andrianova N.N., Borisov A.M., Mashkova E.S., Shulga V.I. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2016. V. 10. P. 412. http://doi.org/10.1134/S1027451016020233
  14. Zykova E.Y., Khaidarov A.A., Ivanenko I.P., Gainullin I.K. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2012. V. 6. P. 877. http://doi.org/10.1134/S102745101211016X
  15. Gainullin I.K. // Surf. Sci. 2019. V. 681. P. 158. http://doi.org/10.1016/j.susc.2018.11.003
  16. Gainullin I.K. // Physics-Uspekhi. 2020. V. 63. № 9. http://doi.org/10.3367/UFNe.2019.11.038691
  17. Gainullin I. K // Surf. Sci. 2018. V. 677. P. 324. http://doi.org/10.1016/j.susc.2018.08.007
  18. Winter H. // Phys. Rep. 2002. V. 367. P. 387. http://doi.org/10.1016/S0370-1573(02)00010-8
  19. Liu P., Gainullin I.K., Esaulov V.A. et al. // Phys. Rev. A. 2020. V. 101. P. 032706. http://doi.org/10.1103/PhysRevA.101.032706
  20. Shi Y., Yin L., Ding B. et al. // Phys. Rev. A. 2022. V. 105. P. 042807. http://doi.org/10.1103/PhysRevA.105.042807
  21. Van Wunnik J.N.M., Brako R., Makoshi K., Newns D.M. // Surf. Sci. 1983. V. 126. № 1–3. P. 618.
  22. Borisov A.G., Winter H. // Nucl. Instrum. Methods Phys. Res. B. 1996. V. 115. № 1–4. P. 1425. http://doi.org/10.1016/0168-583X(96)01518-2
  23. Усман Е.Ю., Гайнуллин И.К., Уразгильдин И.Ф. // Вестн. Моск. ун-та. 2005. № 2. С. 23.
  24. Amanbaev E.R., Shestakov D.K., Gainullin I.K. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2009. V. 3. P. 865. http://doi.org/10.1134/S1027451009060032
  25. Magunov A.A., Shestakov D.K., Gainullin I.K., Urazgil’din I.F. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2008. V. 2. P. 764. http://doi.org/10.1134/S1027451008050170
  26. Shestakov D.K., Polivnikova T.Yu., Gainullin I.K., Urazgildin I.F. // Nucl. Instrum. Methods Phys. Res. B. 2009. V. 267. P. 2596. http://doi.org/10.1016/j.nimb.2009.05.043
  27. Gainullin I.K., Urazgildin I.F. // Phys. Rev. B. 2006. V. 74. P. 205403. http://doi.org/10.1103/PhysRevB.74.205403
  28. Souda R., Ayzawa T., Hayami W., Otani S., Ishizawa Y. // Phys. Rev. B. 1990. V. 42. P. 7761. http://doi.org/10.1103/PhysRevB.42.7761
  29. Amanbaev E.R., Gainullin I.K., Zykova E.Yu., Urazgildin I.F. // Thin Solid Films. 2011. V. 519. P. 4737. http://doi.org/10.1016/j.tsf.2011.01.026
  30. Gainullin I.K. // Phys. Rev. A. 2019. V. 100. P. 032712. http://doi.org/10.1103/PhysRevA.100.032712
  31. Canário , Borisov , Gauyacq , Esaulov // Phys. Rev. B. 2005. V. 71. № 12. P. 121401. http://doi.org/10.1103/PhysRevB.71.121401
  32. Gainullin I.K., Usman E.Yu., Song Y.W., Urazgil’din I.F. // Vacuum. 2003. V. 72. P. 263. http://doi.org/10.1016/j.vacuum.2003.07.001
  33. Usman E.Yu., Urazgil’din I.F., BorisovA.G., Gauyacq J.P. // Phys. Rev. B. 2001. V. 64. P. 205405. http://doi.org/10.1103/PhysRevB.64.205405
  34. Gainullin I.K., Usman E.Y., Urazgil’din I.F. // Nucl. Instrum. Methods Phys. Res. B. 2005. V. 232. P. 22. http://doi.org/10.1016/j.nimb.2005.03.019
  35. Moskalenko S.S., Gainullin I.K. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2023. V. 17. P. 299. http://doi.org/10.1134/S1027451022060155
  36. Obreshkov B., Thumm U. // Phys. Rev. A. 2013. V. 87. P. 022903. http://doi.org/10.1103/PhysRevA.87.022903
  37. Melkozerova J.A., Gainullin I.K. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2023. V. 12. P. 1175. http://doi.org/10.1134/S1027451022060143
  38. Gao L., Zhu Y., Shi Y., Liu P., Xiao Y., Li G., Liu Y., Esaulov V.A., Chen X., Chen L., Guo Y. // Phys. Rev. A. 2017. V. 96. P. 052705. http://doi.org/10.1103/PhysRevA.96.052705
  39. Klimov N.E., Gainullin I.K. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2023. V. 17. № 1. P. 72. http://doi.org/10.1134/S1027451023010123
  40. Shaw J., Zhang Y., Doerr D., Chakraborty H., Monismith D. // Phys. Rev. A. 2019. V. 98. P. 052705. http://doi.org/10.1103/PhysRevA.98.052705
  41. Shaw J., Monismith D., Zhang Y., Doerr D., Chakraborty H.S. // Atoms. 2020. V. 7. P. 89. http://doi.org/10.3390/atoms7030089
  42. Iglesias-García A., Romero M.A., García E.A., Goldberg E.C. // Phys. Rev. B. 2020. V. 102. P. 115406. http://doi.org/10.1103/PhysRevB.102.115406
  43. Gainullin I.K., Sonkin M.A. // Phys. Rev. A. 2015. V. 92. P. 022710. http://doi.org/10.1103/PhysRevA.92.022710
  44. Gainullin I.K. // Moscow University Phys. Bull. 2019. V. 74. P. 585. http://doi.org/10.3103/S0027134919060158
  45. Gainullin I.K. // Comp. Phys. Commun. 2017. V. 210. P. 72. http://doi.org/10.1016/j.cpc.2016.09.021
  46. Gainullin I.K., Sonkin M.A. // Comp. Phys. Commun. 2015. V. 188. P. 68. http://doi.org/10.1016/j.cpc.2014.11.005
  47. Gainullin I.K. // Phys. Rev. A. 2017. V. 95. P. 052705. http://doi.org/10.1103/PhysRevA.95.052705
  48. Gainullin I.K., Sonkin M.A. // Phys. Rev. A. 2015. V. 92. P. 022710. http://doi.org/10.1103/PhysRevA.92.022710
  49. Aleksandrov A.F., Gainullin I.K., Sonkin M.A. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2020. V. 14. P. 791. http://doi.org/10.1134/S1027451020040205
  50. Majorosi S., Czirják A. // Comp. Phys. Comm. 2016. V. 208. P. 9. http://doi.org/10.1016/j.cpc.2016.07.006
  51. Gainullin I.K., Klavsyuk A.L. // Bull. Russ. Acad. Sci. Phys. 2012. V. 76. P. 542. http://doi.org/10.3103/S1062873812050115
  52. Fu Y., Zeng J., Yuan J. // Comp. Phys. Commun. 2017. V. 210. P. 181. http://doi.org/10.1016/j.cpc.2016.09.016
  53. Gainullin I.K., Sonkin M.A. // Math. Models Comput. Simulations. 2019. V. 11. P. 964. http://doi.org/10.1134/S2070048219060048
  54. Lüdde H.J., Horbatsch M., Kirchner T. // Eur. Phys. 2018. V. 91. P. 99. http://doi.org/10.1140/epjb/e2018-90165-x
  55. Zhou S.P., Liu A.H., Liu F.C., Wang C.C., Ding D.J. // Chin. Phys. B. 2019. V. 28. P. 083101. http://doi.org/10.1088/1674-1056/28/8/083101
  56. Liu Q., Liu F., Hou C. // Proc. Comput. Sci. 2020. V. 171. P. 312. http://doi.org/10.1016/j.procs.2020.04.032
  57. Cohen J.S., Fiorentini G. // Phys. Rev. A. 1986. V. 33. P. 1590.
  58. Jennings P.J., Jones R.O., Weinert M. // Phys. Rev. B. 1988. V. 37. P. 6113.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences