Skyrmions and Fluctuations of Spin Spirals in Strongly Correlated Fe1–хCoхSi with Noncentrosymmetric Cubic Structure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Strongly correlated Fe1–хCoxSi solid solutions with broken B20-type cubic structure are studied. Within the framework of the spin-fluctuation theory and in the model of the density of electronic states, arising from first-principles calculations within the framework of the generalized gradient approximation taking into account strong Coulomb correlations (GGA+U) temperature transitions are considered in strongly correlated Fe1–хCoxSi alloys (for example, x = 0.2, 0.3) with the Dzyaloshinskii–Moriya (DM) interaction. It is shown that in the compositions under consideration, a first-order magnetic phase transition, which is prolonged in temperature, occurs, during which the sign of the intermode coupling parameter in the Ginzburg–Landau functional changes. It is found that such a transition results in the formation of skyrmion A-phases in limited ranges of temperatures and external magnetic fields, beyond which the experimentally observed fluctuations of spin spirals are realized. The constructed (hТ)-diagrams (which indicate the range of long-range order, fluctuation and skyrmion phases) of Fe1–хCoxSi at x = 0.2 and 0.3 are consistent with the experiment.

About the authors

А. А. Povzner

Ural Federal University Named After the First President of Russia B. N. Yeltsin

Author for correspondence.
Email: a.a.povzner@urfu.ru
Russian Federation, Yekaterinburg, 620002

А. G. Volkov

Ural Federal University Named After the First President of Russia B. N. Yeltsin

Email: a.a.povzner@urfu.ru
Russian Federation, Yekaterinburg, 620002

Т. А. Nogovitsyna

Ural Federal University Named After the First President of Russia B. N. Yeltsin

Email: a.a.povzner@urfu.ru
Russian Federation, Yekaterinburg, 620002

References

  1. Beille J., Voiron J., Towfiq F., Roth M., Zhang Z.Y. // J. Phys. F: Met.Phys. 1981. V. 11. P. 2153.
  2. Стишов С.М., Перова А.Е. // УФН. 2011. T. 181. № 11. C. 1157. https://www.doi.org/10.3367/UFNr.0181.201111b.1157
  3. Григорьев С.В., Дядькин В.А., Малеев С.В., Menzel D., Schoenes J., Lamago D., Москвин Е.В., Eckerlebe H. // ФТТ. 2010. T. 52. № 5. C. 852.
  4. Siegfried S.-A., Altynbaev E.V., Chubova N.M., Dyadkin V., Chernyshov D., Moskvin E.V., Menzel D., Heinemann A., Schreyer A., Grigoriev S.V. // Phys. Rev. B. 2015. V. 91. P. 184406. https://doi.org/10.1103/PhysRevB.91.184406
  5. Grigoriev S.V., Dyadkin V.A., Moskvin E.V., Lamago D., Wolf Th., Eckerlebe H., Maleyev S.V. // Phys. Rev. B. 2009. V. 79. P. 144417. https://www.doi.org/10.1103/PhysRevB.79.144417
  6. Дзялошинский И.Е. // ЖЭТФ. 1957. T. 32. № 6. C. 1548.
  7. Moriya T. // Phys. Rev. 1960. V. 120. P. 91.
  8. Bauer A., Garst M., Pfleiderer C. // Phys. Rev. B. 2016. V. 93. P. 235144. https://doi.org/10.1103/PhysRevB.93.235144
  9. Janoschek M., Garst M., Bauer A., Krautscheid P., Georgii R., Boni P., Pfleiderer C. // Phys. Rev. B. 2013. V. 87. P. 134407. https://www.doi.org/10.1103/PhysRevB.87.134407
  10. Münzer W., Neubauer A., Adams T., Mühlbauer S., Franz C., Jonietz F., Georgii R., Böni P., Pedersen B., Schmidt M., Rosch A., Pfleiderer C. // Phys. Rev. B. 2010. V. 72. P. 041203. http://dx.doi.org/10.1103/PhysRevB.81.041203
  11. Hubbard J. // Proc. Roy. Soc. A. 1963. V. 276. P. 238.
  12. Moriya T. // Spin Fluctuations in Itinerant Electron Magnetism. Berlin: Springer-Verlag, 1985.
  13. Hubbard J. // Phys. Rev. Lett. 1959. V. 3. P. 77.
  14. Brazovskii S.A., Dzyaloshinskii I.E., Kukharenko B.G. // Sov. Phys. JETP. 1976. V. 43. P. 1178.
  15. Brando M., Belitz D., Grosche F.M., Kirkpatrick T.R. // Rev. Mod. Phys. 2016. V. 88. P. 25006. https://doi.org/10.1103/RevModPhys.88.025006
  16. Hertz J.A., Klenin M.A. // Phys. Rev. B. 1974. V. 10. № 3. P. 1084. https://doi.org/10.1103/PhysRevB.10.1084
  17. Hertz J.A., Klenin M.A. // Physica B. 1977. V. 91. № 1. P. 49.
  18. Lindhard J. // Dan. Mat. Fys. Medd. 1954. V. 28. № 8. P. 1.
  19. Dzyaloshinskii I.E., Kondratenko P.S. // Sov. Phys. JETP. 1976. V. 43. № 5. P. 1036.
  20. Berry M.V. // Proc. Royal Soc. London A. 1984. V. 392. P. 45. https://doi.org/10.1098/rspa.1984.0023
  21. Wilde M.A., Dodenhöft M., Niedermayr A., Bauer A., Hirschmann M.M., Alpin K., Schnyder A.P., Pfleiderer C. // Nature. 2021. V. 594. P. 374. https://doi.org/10.1038/s41586-021-03543-x
  22. Vergniory M.G., Elcoro L., Felser C., Regnault N., Bernevig B.A., Wang Z. // Nature. 2019. V. 566. P. 480. https://doi.org/10.1038/s41586-019-0954-4
  23. Bannenberg L.J., Kakurai K., Qian F., Lelievre-Berna E., Dewhurst C.D., Onose Y., Endoh Y., Tokura Y., Pappas C. // Phys. Rev. B. 2016. V. 94. P. 104406. https://doi.org/10.1103/PhysRevB.94.104406

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences