Procedure for Fabrication and Characterization of Van-der-Waals Heterostructures

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this work we provide a step-by-step description of the technique for manufacturing various van der Waals heterostructures. First, we discuss the procedure to obtain monolayer and few-layer flakes from layered materials, in particular from graphite and hexagonal boron nitride. Next, we consider different approaches to the assembly depending on the required final device. Further, we describe in detail the procedure for making ohmic contacts and give the parameters for plasma chemistry and metal deposition. We observe the field effect in transport measurements but a number of features – a strong shift of the charge neutral point from the zero-gate voltage, a large resistance away from the charge neutral point, and low mobility – indicate a problem with the quality of the resulting devices. Nevertheless, one of the fabricated devices demonstrates reasonable quality – the maximum mobility is estimated at 15000 cm2V–1s–1, the magnetic field dependences demonstrate the quantum Hall effect, which is standard for high-quality graphene. Unexpectedly, scanning electron microscope images of the resulting devices reveal a large amount of contamination on the surface of the flakes, which may explain the corresponding quality of our devices. Preliminary results of flakes cleaning with chemical compounds and thermal treatment are given.

作者简介

A. Shevchun

Institute of Solid State Physics of the RAS

编辑信件的主要联系方式.
Email: shevchun@issp.ac.ru
俄罗斯联邦, Chernogolovka

M. Prokudina

Institute of Solid State Physics of the RAS

Email: shevchun@issp.ac.ru
俄罗斯联邦, Chernogolovka

S. Egorov

Institute of Solid State Physics of the RAS

Email: shevchun@issp.ac.ru
俄罗斯联邦, Chernogolovka

E. Tikhonov

Institute of Solid State Physics of the RAS

Email: shevchun@issp.ac.ru
俄罗斯联邦, Chernogolovka

参考

  1. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Katsnelson M.I., Grigorieva I.V., Dubonos S.V., Firsov A.A. // Nature. 2005. V. 438. P. 197. https://www.doi.org/10.1038/nature04233.
  2. Novoselov K.S., Mishchenko A., Carvalho A., Castro Neto A.H. // Science. 2016. V. 353. Iss. 6298. https://www.doi.org/10.1126/science.aac9439
  3. Yankowitz M., Xue J., Cormode D., Sanchez-Yamagi-shi J.D., Watanabe K., Taniguchi T., Jarillo-Herrero P., Jacquod P., LeRoy B.J. // Nature Phys. 2012. V. 8. P. 382. https://www.doi.org/10.1038/nphys2272.
  4. Shi G., Hanlumyuang Y., Liu Z., Gong Y., Gao W., Li B., Kono J., Lou J., Vajtai R., Sharma P., Ajayan P.M. // Nano Lett. 2014. V. 14. P. 1739. https://www.doi.org/10.1021/nl4037824
  5. Larentis S., Tolsma J. R., Fallahazad B., Dillen D.C., Kim K., MacDonald A.H., Tutuc E. // Nano Lett. 2014. V. 14. P. 2039. https://www.doi.org/10.1021/nl500212s
  6. Черненко А.В., Бричкин А.С., Голышков Г.М., Шевчун А.Ф. // Известия РАН. Сер. Физ. 2023. Т. 87. № 2. С. 189. https://www.doi.org/10.31857/S0367676522700351
  7. Черненко А.В., Бричкин А.С. // Известия РАН. Сер. Физ. 2021. Т. 85. № 2. С. 245. https://www.doi.org/10.31857/S0367676521020071
  8. Gannett W., Regan W., Watanabe K., Taniguchi T., Crommie M. F., Zettl A. // Appl. Phys. Lett. 2011. V. 98. P. 242105. https://www.doi.org/10.1063/1.3599708
  9. Kim E., Yu T., Song T. S.,Yu B. // Appl. Phys. Lett. 2011. V. 98. P. 262103. https://www.doi.org/10.1063/1.3604012
  10. Wang L., Chen Z., Dean C. R., Taniguchi T., Watanabe K., Brus L.E., Hone J. // ACS Nano 2012. V. 6. Iss. 10. P. 9314. https://www.doi.org/10.1021/nn304004s
  11. Dean C.R., Young A.F., Cadden-Zimansky P., Wang L., Ren H., Watanabe K., Taniguchi T., Kim P., Hone J., Shepard K.L. // Nature Phys. 2011. V. 207. P. 693. https://www.doi.org/10.1038/nphys2007.
  12. Новоселов K.C. // УФН. 2011. V. 181. P. 1299. https://www.doi.org/10.3367/UFNr.0181.201112f.1299
  13. Xin N., Lourembam J., Kumaravadivel. P., Kazan-tsev A.E., Wu Z., Mullan C., Barrier J., Geim A.A., Grigorieva I.V., Mishchenko A., Principi A., Fal’ko V.I., Ponomarenko L.A., Geim A.K., Berdyugin A.I. // Nature. 2023. V. 616. P. 270. https://www.doi.org/10.1038/s41586-023-05807-0
  14. Huang Y., Sutter E., Shi N.N., Zheng J., Yang T., Englund D., Gao H.-J., Sutter P. // ACS Nano 2015. V. 9. P. 10612. https://www.doi.org/10.1021/acsnano.5b04258
  15. Wang L., Meric I., Huang P. Y., Gao Q., Gao Y., Tran H., Taniguchi T., Watanabe K., Campos L.M., Muller A.D, Guo J., Kim P., Hone J., Shepard K.L., Dean C.R. // Science. 2013. V. 342. Iss. 6158. P. 614. https://www.doi.org/10.1126/science.1244358
  16. Pizzocchero F., Gammelgaard L., Jessen B.S., Cari-dad J.M., Wang L., Hone J., Bøggild B., Booth T.J. // Nature Comm. 2016. V. 7. P. 11894. https://www.doi.org/10.1038/ncomms11894
  17. Dean C.R., Young A.F., Meric I., Lee C., Wang L., Sorgenfrei S., Watanabe K., Taniguchi T., Kim P., Shepard K.L., Hone J. // Nature Nanotechnology. 2010. V. 5. P. 722. https://www.doi.org/10.1038/nnano.2010.172
  18. Geim A.K., Novoselov K.S. // Nature Mater. 2007. V. 6. P. 183. https://www.doi.org/10.1038/nmat1849
  19. Castro Neto A. H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K. // Rev. Mod. Phys. 2009. V. 81. P. 109. https://www.doi.org/10.1103/RevModPhys.81.109
  20. Jain A., Bharadwaj P., Heeg S., Parzefall M., Taniguchi T., Watanabe K., Novotny L. // Nanotechnology. 2018. V. 29. P. 265203. https://www.doi.org/10.1088/1361-6528/aabd90

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024