Changes in the Spectral Characteristics of Some Polymeric Materials in the Frequency Range from 0.2 to 2 THz as a Result of Exposure to a Megawatt Flux of Submillimeter Radiation of Microsecond Duration

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The effect of exposure to pulsed megawatt submillimeter (0.1–0.4 THz) radiation fluxes on the spectral characteristics of some thin-film polymer materials in the frequency range from 0.2 to 2 THz has been registered. The polymer samples have been characterized using technical solutions within the framework of time-domain-spectroscopy and BWO spectroscopy. For the exposure, a radiation flux in the submillimeter wavelength range with duration of about 4 μs generated during beam-plasma interaction at the GOL–PET facility (BINP SB RAS) has been used. Relative changes in the real part of the permittivity of individual polyvinylidene fluoride samples is found to reach a level of 0.5 with an initial value of about 3.0, while for polyvinyl chloride samples no changes in this parameter have been registered. At the same time, for polyurea individual samples, both significant changes in this parameter and its insignificant changes as a result of exposure have been observed. The results of the experiments provide a basis for using thin-film polymeric materials as substrates for samples of supramolecular complexes, which during research will be exposed to powerful pulsed radiation fluxes in the submillimeter wavelength range.

Texto integral

Acesso é fechado

Sobre autores

A. Arzhannikov

Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: A.V.Arzhannikov@inp.nsk.su
Rússia, Novosibirsk

S. Sinitsky

Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences

Email: A.V.Arzhannikov@inp.nsk.su
Rússia, Novosibirsk

D. Samtsov

Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences

Email: A.V.Arzhannikov@inp.nsk.su
Rússia, Novosibirsk

P. Kalinin

Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences

Email: A.V.Arzhannikov@inp.nsk.su
Rússia, Novosibirsk

S. Kuznetsov

Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences

Email: A.V.Arzhannikov@inp.nsk.su
Rússia, Novosibirsk

V. Stepanov

Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences

Email: A.V.Arzhannikov@inp.nsk.su
Rússia, Novosibirsk

S. Popov

Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences

Email: A.V.Arzhannikov@inp.nsk.su
Rússia, Novosibirsk

E. Sandalov

Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences

Email: A.V.Arzhannikov@inp.nsk.su
Rússia, Novosibirsk

M. Atlukhanov

Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences

Email: A.V.Arzhannikov@inp.nsk.su
Rússia, Novosibirsk

A. Stankevich

Zababakhin All-Russia Research Institute of Technical Physics; Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences

Email: A.V.Arzhannikov@inp.nsk.su
Rússia, Snezhinsk; Ekaterinburg

A. Pestov

Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences

Email: A.V.Arzhannikov@inp.nsk.su
Rússia, Ekaterinburg

N. Nikolaev

Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences

Email: A.V.Arzhannikov@inp.nsk.su
Rússia, Novosibirsk

A. Rybak

Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences

Email: A.V.Arzhannikov@inp.nsk.su
Rússia, Novosibirsk

Bibliografia

  1. Fischer B.M., Helm H., Jepsen P.U. // Proc. SPIE. 2006. V. 6038. P. 42. https://doi.org/10.1117/12.651748
  2. Reimann K., Woerner M., Elsaesser T. // J. Chem. Phys. 2021. V. 154. № 12. P. 120901. https://doi.org/10.1063/5.0046664
  3. Surovtsev N.V., Malinovsky V.K., Boldyreva E.V. // J. Chem. Phys. 2011. V. 134. № 4. P. 045102. https://doi.org/10.1063/1.3524342
  4. Afsah-Hejri L., Hajeb P., Ara P., Ehsani R.J. // Compr. Rev. Food Sci. Food Safety. 2019. V. 18. № 5. P. 1563. https://doi.org/10.1111/1541-4337.12490
  5. Folpini G., Reimann K., Woerner M., Elsaesser T., Hoja J., Tkatchenko A. // Phys. Rev. Lett. 2017. V. 119. № 9. P. 097404. https://doi.org/10.1103/PhysRevLett.119.097404
  6. Michalchuk A.A.L., Fincham P.T., Portius P., Pulham C.R., Morrison C.A. // J. Phys. Chem. C. 2018. V. 122. № 34. P. 19395. https://doi.org/10.1021/acs.jpcc.8b05285
  7. Michalchuk A.A.L. Trestman M., Rudić S., Portius P., Fincham P.T., Pulham C.R., Morrison C.A. // J. Mater. Chem. A. 2019. V. 7. № 33. P. 19539. https://doi.org/10.1039/c9ta06209b
  8. Michalchuk A.A.L., Hemingway J., Morrison C.A. // J. Chem. Phys. 2021. V. 154. № 6. P. 064105. https://doi.org/10.1063/5.0036927
  9. Michalchuk A.A.L., Morrison C.A. // Theor. Comput. Chem. 2022. V. 22. P. 215. https://doi.org/10.1016/B978-0-12-822971-2.00010-3
  10. Stankevich A.V., Taibinov N.P., Kostitsyn O.V., Garmashev A.Yu. // J. Phys.: Conf. Ser. 2021. V. 1787. № 1. P. 012006. https://doi.org/10.1088/1742-6596/1787/1/012006
  11. Stankevich A.V., Tolshchina S.G., Korotina A.V., Rusinov G.L., Chemagina I.V., Charushin V.N. // Molecules. 2022. V. 27. № 20. P. 6966. https://doi.org/10.3390/molecules27206966
  12. Arzhannikov A.V., Burdakov A.V., Kalinin P.V. et al. // Vestnik Novosibirsk State University. Ser. Phys. 2010. V. 5. № 4. P. 44.
  13. Arzhannikov A.V. Burmasov V.S., Ivanov I.A., Kalinin P.V., Kuznetsov S.A., Makarov M.A., Mekler K.I., Polosatkin S.V., Rovenskikh A.F., Samtsov D.A., Sinitsky S.L., Stepanov V.D., Timofeev I.V. // 44th Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Paris, 2019. P. 1. https://doi.org/10.1109/IRMMW-THz.2019.8874408
  14. Arzhannikov A.V., Ivanov I.A., Kasatov A.A., Kuznetsov S.A., Makarov M.A., Mekler K.I., Polosatkin S.V., Popov S.S., Rovenskikh A.F., Samtsov D.A., Sinitsky S.L., Stepanov V.D., Annenkov V.V., Timofeev I.V. // Plasma Phys. Controlled Fusion. 2020. V. 62. № 4. P. 045002. https://doi.org/10.1088/1361-6587/ab72e3
  15. Arzhannikov A.V., Sinitsky, S.L., Popov S.S., Timofeev I.V., Samtsov D.A., Sandalov E.S., Kalinin P.V., Kuklin, K.N., Makarov M.A., Rovenskikh A.F., Stepanov V.D., Annenkov V.V., Glinsky V.V. // IEEE Trans. on Plasma Sci. 2022. V. 50. № 8. P. 2348. https://doi.org/10.1109/TPS.2022.3183629
  16. Аржанников А.В., Синицкий С.Л., Самцов Д.А., Калинин П.В., Попов С.С., Атлуханов М.Г., Сандалов Е.С., Степанов В.Д., Куклин К.Н., Макаров М.А. // Сиб. физ. журнал. 2023. Т. 18. № 4. С. 79. https://doi.org/10.25205/2541-9447-2023-18-4-79-93
  17. Mamrashev A., Minakov F., Nikolaev N., Antsygin V. // Photonics. 2021. V. 8. № 6. P. 213. https://doi.org/10.3390/photonics8060213
  18. Mamrashev A.A., Maximov L.V., Nikolaev N.A., Chapovsky P.L. // IEEE Trans. Terahertz Sci. Tech. 2018. V. 8. № 1. P. 13. https://doi.org/10.1109/TTHZ.2017.2764385
  19. Кузнецов С.А., Астафьев М.А., Скляров В.Ф., Лазорский П.А., Аржанников А.В. // Вестн. НГУ. Сер. Физика. 2014. Т. 9. № 4. C. 15. https://doi.org/10.54362/1818-7919-2014-9-4-15-38
  20. Станкевич А.В., Соболевская А.В., Грецова А.Н., Стрельцова М.С., Фролова О.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. Т. 10. С. 3. https://doi.org/10.31857/S1028096023100205
  21. Семчиков Ю.Д., Жильцов С.Ф., Зайцев С.Д. Введение в химию полимеров: Учебное пособие. СПб.: Лань, 2014. 224 c.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Scheme of spectroscopic measurements in the time domain (a) and an example of processing the results of registration of the reference signal (1) and the signal in the presence of the sample (2) within the framework of the used technique (b). FFT - fast Fourier transform.

Baixar (191KB)
3. Fig. 2. Schematic of spectroscopic measurements in the frequency domain (a) and the frequency interval available with different LOVs under frequency multiplication conditions (b).

Baixar (336KB)
4. Fig. 3. Scheme of irradiation of samples with a powerful stream of submillimetre radiation (a): 1 - electron beam; 2 - plasma column; 3 - THz radiation flux; 4 - mirror for THz radiation flux; 5 - sample package; 6 - neon lamp panel; 7 - polychromator. Display of the radiation flux cross-section through the luminescence of gas-discharge neon bulbs assembled in a panel, without a sample package (top) and in the presence of a sample package (bottom) (b).

Baixar (123KB)
5. Fig. 4. Spectral composition of the flux recorded by the polychromator, in the absence of samples (a) and under conditions when it passes through the package with samples of the materials under study (b).

Baixar (327KB)
6. Fig. 5. Change in the real part of the dielectric permittivity of polyvinyl chloride (a) and polyvinylidene fluoride (b) as a result of exposure to a stream of submillimetre radiation (a series of five pulses) obtained by time domain spectroscopy (solid lines) and LOV spectroscopy (symbols) before exposure to radiation (1) and after (2).

Baixar (168KB)
7. Fig. 6. Change in the real part of dielectric permittivity of polyurea samples No. 1581 (a) and No. 1580 (b) as a result of exposure to a stream of submillimetre radiation (two pulses), obtained by time domain spectroscopy (solid lines) and LOV spectroscopy (symbols) before exposure to radiation (1) and after (2).

Baixar (144KB)
8. Fig. 7. Change in the real part of dielectric permittivity of samples No. 1584 (a) and No. 1585 (b) made of polytetrafluoroethylene as a result of exposure to a stream of submillimetre radiation (five pulses), obtained by time domain spectroscopy (solid lines) and LOV spectroscopy (symbols) before exposure to radiation (1) and after (2).

Baixar (190KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025