Lead slowing-down neutron spectrometry 1: cross-section data for 241Am(n, f), 242mAm(n, f), 243Am(n, f) at energies up to 100 keV

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A review of the results of a series of works performed by a joint group of researchers from the INR RAS and the SSC RF–IPPE on the lead slowing-down neutron spectrometer SVZ-100 to measure the fission cross-sections of americium isotopes 241Am, 242mAm, 243Am by neutrons with energies below 100 keV is presented. Due to the large mass of the working substance (100 tons of high-purity lead) and the generation of neutrons by protons with an energy of 209 MeV at the INR RAS accelerator, the high aperture ratio of the SVZ-100 made it possible to study neutron-nuclear processes in microgram samples of radioactive nuclides, which is not available in experiments using time-of-flight spectrometry. Unique scientific information has been obtained, partially compensating for the missing, or supplementing the existing, but often contradictory or insufficient data of experiments performed both on time-of-flight facilities and on lead slowing-down neutron spectrometers at other research centres. The results of the work of INR RAS–SSC RF–IPPE are reflected in international nuclear databases and indicate in a number of cases the need to adjust the recommended approximating and calculated values. Information is provided on the few carried out experiments and planned studies of neutron-induced fission cross-sections of americium isotopes in other centres after the completion of the work of the INR RAS–SSC RF–IPPE.

Full Text

Restricted Access

About the authors

E. A. Koptelov

Institute for Nuclear Research RAS

Author for correspondence.
Email: koptelov@inr.ru
Russian Federation, 117312, Moscow

References

  1. Велихов Е.П., Гагаринский А.Ю., Субботин С.А., Цибульский В.Ф. Россия в мировой энергетике XXI века. М.: ИздАТ, 2006. 136 с.
  2. Кузьминов Б.Д., Игнатюк А.В., Манохин В.Н., Сальников О.А. // Атомная энергия. 1986. Т. 61. № 6. С. 431.
  3. Азизов Э.А., Гладуш Г.Г., Минеев А.Б. УТС с магнитным удержанием и разработка гибридного реактора синтез–деление на основе токамака. М.: Тровант, 2016. 320 с.
  4. The International Network of Nuclear Reaction Data Centers: https://www-nds.iaea.org/nrdc/
  5. РОСФОНД – РОСсийская библиотека Файлов Оцененных Нейтронных Данных. АО “ГНЦ РФ–ФЭИ”. https://ippe.ru
  6. Игнатюк А.В., Николаев М.Н., Фурсов Б.И. // Атомная энергия. 2014. Т. 116. № 4. С. 209.
  7. Колесов В.Ф. Электроядерные установки и проблемы ядерной энергетики. Саров: РФЯЦ ВНИИЭФ, 2013. 620 с.
  8. Делящиеся изомеры. // Физический энциклопедический словарь. М.: Советская энциклопедия, 1983. С. 148.
  9. Strutinsky V.M. // Nucl. Phys. A. 1967. V. 95. P. 420.
  10. Алексеев А.А., Бергман А.А., Берлев А.И., Копте- лов Э.А. Нейтронный комплекс ИЯИ РАН. Спектрометр нейтронов по времени замедления в свинце (СВЗ-100). Препринт ИЯИ РАН № 1258/2010. М.: ИЯИ РАН, 2010. 52 с.
  11. Алексеев А.А., Бергман А.А., Берлев А.И., Копте- лов Э.А., Самылин Б.Ф., Труфанов А.М., Фур- сов Б.И., Шорин В.С. // Атомная энергия. 2009. Т. 106. № 2. С. 106. https://doi.org/10.1007/s10512-009-9142-1
  12. Alekseev A.A., Bergman A.A., Berlev A.I., Koptelov E.A., Samylin B.F., Trufanov A.M., Fursov B.I., Shorin V.S. Neutron-Induced Fission Cross Section of Uranium, Americium and Curium Isotopes. Progress Report – Research Contract 14485. Coordinated Research Project on Minor Actinide Neutron Reaction Data (MANREAD). IAEA: December 2009. 22 p. https://www-nds.iaea.org/publications/indc/indc-ccp-0451
  13. Алексеев А.А., Бергман А.А., Берлев А.И., Копте- лов Э.А., Егоров А.С., Самылин Б.Ф., Фурсов Б.И., Шорин В.С. // Атомная энергия. 2011. Т. 111. № 6. С. 352. https://doi.org/10.1007/s10512-012-9514-9
  14. Alekseev A.A., Bergman A.A., Berlev A.I., Koptelov E.A., Egorov A.S., Samylin B.F., Trufanov A.M., Fursov B.I., Shorin V.S. Neutron-induced Fission Cross Sections of Am and Cm Isotopes (Final Report of RC-14485) Resonance and Fast Neutron Induced Fission Cross Sections of Americium and Curium Nuclides (Third-year Report of RC-14485) under the CRP on Minor Actinide Neutron Reaction Data (MANREAD). IAEA: January 2012. 30 p. https://www-nds.iaea.org/publications/indc/indc-ccp-0454
  15. Алексеев А.А., Бергман А.А., Берлев А.И., Копте- лов Э.А., Егоров А.С., Самылин Б.Ф., Фурсов Б.И., Шорин В.С. // Ядерная физика. 2014. Т. 77. № 5. С. 1. https://doi.org/ 10.1134/S1063778814050056
  16. Алексеев А.А., Бергман А.А., Берлев А.И., Копте- лов Э.А., Егоров А.С., Самылин Б.Ф., Фурсов Б.И., Шорин В.С. // Атомная энергия. 2014. Т. 116. № 6. С. 338. https://doi.org/10.1007/s10512-014-9872-6
  17. Блохин А.И., Блохин Д.А., Манохин В.Н., Митенкова Е.Ф., Новиков Н.В., Сипачев И.В., Соловьева Е.В. // ВАНТ. Сер. Ядерные константы. 2008. Вып. 1–2. С. 26.
  18. Bowman C.D., Coops M.S., Auchampaugh G.F., Fultz S.C. // Phys. Rev. B. 1965. V. 137. P. 326. https://doi.org/10.1103/PhysRev.137.B326
  19. Derrien H., Lucas B. The Total Cross-Section and the Fission Cross-Section of 241Am in the Resonance Region. Resonance Parameters. // Proc. Conf. on Nucl. Cross-Sect. and Tech. Washington, 1975. V. 2. P. 637.
  20. Knitter H.H., Budtz-Jorgensen C. // Atomkernenergie. 1979. V. 33. № 3. P. 205.
  21. Dabbs J.W.T., Johson C.H., Bemis C.E. Jr. // Nucl. Sci. Eng. 1983. V. 83. P. 22. https://doi.org/10.13182/NSE83-A17986
  22. Yamamoto S., Kobayashi K., Miyoshi M. et al. // Nucl. Sci. Eng. 1997. V. 126. P. 201. https://doi.org/10.13182/NSE97-A24473
  23. Jandel M., Bredeweg T.A., Bond E.M. et al. // Phys. Rev. C. 2008. V. 78. № 3. P. 4609. https://doi.org/10.1103/PhysRevC.78.049904
  24. Gerasimov V.F., Danichev V.V., Dement`ev V.N., Zenkevich V.S., Mozolev G.V. Measurement of Transuranium Isotopes Fission Cross Section with Lead Neutron Slowing-Down Spectrometer // Proc. Int. Sem. on Interactions of Neutrons with Nuclei (ISINN-5). JINR: Dubna Reports, 1997. No.e3-97–213. P. 348.
  25. Bowman C.D., Auchampaugh G.F., Fultz S.C., Hoff R.W. // Phys. Rev. 1968. V. 166. P. 1219. https://doi.org/10.1103/PhysRev.166.1219
  26. Dabbs J.W.T., Bemis C.E., Raman S. et al. // Nucl. Sci. Eng. 1983. V. 84. P. 1. https://doi.org/10.13182/NSE83-A17453
  27. Browne J.C., White R.M., Howe R.E. et al. // Phys. Rev. C. 1984. V. 29. P. 2188. https://doi.org/10.1103/PhysRevC.29.2188
  28. Герасимов В.Ф., Даничев В.В., Дементьев В.Н., Зенкевич В.С., Мозолев Г.В. // Нейтронная физика. Матер. 1 Междунар. конф. по нейтронной физике. Т. 3. Киев, 14–18 сентября 1987. М.: ЦНИИАтоминформ, 1988. С.84.
  29. Kai T., Kobayashi K., Yamamoto S. et al. // Annals Nucl. Energy. 2001. V. 28. P. 723. https://doi.org/10.1016/S0306-4549(00)00086-4
  30. Chadwick M.B., Oblozinsky P., Herman M. et al. // Nucl. Data Sheets. 2006. V. 107. P. 2931. https://doi.org/10.1016/j.nds.2006.11.001
  31. Журавлев К.Д., Крошкин Н.И., Четвериков А.П. // Атомная энергия. 1975. Т. 39. № 4. С. 285.
  32. Seeger P.A. Fission Cross Sections from Pommand. Los Alamos Scientific Lab. Report. 1970. LA-4420. 138.
  33. Wisshak K., Kaeppeler F. // Nucl. Sci. Eng. 1983. V. 85. P. 251. https://doi.org/10.13182/NSE83-A17317
  34. Knitter H.H., Budtz-Jorgensen C. // Nucl. Sci. Eng. 1988. V. 99. P. 1. https://doi.org/10.13182/NSE88-A23540
  35. Kobayashi K., Kai T., Yamamoto S. et al. // Nucl. Sci Techn. 1999. V. 36. № 1. P. 20. https://doi.org/10.1080/18811248.1999.9726178
  36. Лазарева Л.Е., Фейнберг Е.Л., Шапиро Ф.Л. // ЖЭТФ. 1955. Т. 29. С. 381.
  37. Bergman A.A., Isakov A.I., Murin I.D., Shapiro F.L., Shtranikh I.V., Kazarnovsky M.V. Lead Slowing-Down Neutron Spectrometry. // Proc. 1st Int. Conf. on Peaceful Uses At. Energy. 1955. V. 4. P. 135.
  38. Попов Ю.П. // ЭЧАЯ. 1995. Т. 26. С. 1503.
  39. Попов. Ю.П. // ЭЧАЯ. 2003. Т. 34. С. 448.
  40. Исаков А.И., Казарновский М.В., Медведев Ю.А., Метелкин Е.В. Нестационарное замедление нейтронов. Основные закономерности и некоторые приложения. М.: Наука, 1984. 264 с.
  41. Slovacek R.E., Cramer D.S., Bean E.B., Valentine J.R., Hockenbury R.W., Block R.C. // Nucl. Sci. Eng. 1977. V. 62. P. 455. https://doi.org/10.13182/NSE77-A26984
  42. Nakagome Y., Block R.C., Slovacek R.E., Bean E.B. // Phys. Rev. C. 1991. V. 43. № 4. P. 1824. https://doi.org/10.1103/PhysRevC.43.1824
  43. Латышева Л.Н., Соболевский Н.М., Коптелов Э.А., Илич Р.Д. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2015. № 11. С. 9. https://doi.org/10.1134/S1027451015060142
  44. Алексеев А.А., Бергман А.А., Берлев А.И., Копте- лов Э.А., Самылин Б.Ф., Труфанов А.М., Фурсов Б.И., Шорин В.С. // Ядерная физика. 2008. Т. 71. № 8. С. 1379. https://doi.org/10.1134/S1063778808080048
  45. Шорин В.С. // ВАНТ. Сер. Ядерные константы. 2008. Вып. 1–2. С. 60 .
  46. Chadwick M.B., Herman M., Oblozinsky P. et al. // Nucl. Data Sheets. 2011. V. 112. Iss. 12. P. 2887. https://doi.org/10.1016/j.nds.2011.11.002
  47. Берлев А.И. Система регистрации, сбора и накопления экспериментальных данных с ядерно-физических установок методом времени пролета. Препринт ИЯИ–1189/2007. М.: ИЯИ РАН, 2007.
  48. Mughabghab S.F. Atlas of Neutron Resonances. Resonance Parameters and Thermal Cross Sections. Z = 1–100. Elsevier Science, 2006. 1372 p.
  49. Eleme Z., Patronis N., Stamatopoulos A. et al. // EPJ Web Conf. 2020. V. 239. Р. 05014. https://doi.org/10.1051/epjconf/202023905014
  50. Belloni F., Calviani M., Colonna N. et al. // Eur. Phys. J. A. 2013. V. 49. Р. 2. https://doi.org/10.1140/epja/i2013-13002-3
  51. Hirose K., Ohtsuki T., Shibasaki Y. et al. // J. Nucl. Sci. Technol. 2012. V. 49. № 11. P. 1057. https://doi.org/10.1080/00223131.2012.730895
  52. Buckner M.Q., Wu C.Y., Henderson R.A. et al. // Phys. Rev. C. 2017. V. 95. Р. 024610. https://doi.org/10.1103/PhysRevC.95.024610
  53. Talou P., Kawano T., Young P.G., Chadwick M.B., MacFarlane R.E. // Nucl. Sci. Eng. 2007. V. 155. P. 84. https://doi.org/10.13182/NSE07-A2646
  54. Fursov B.I., Samylin B.F., Smirenkin G.N., Polynov V.N. // Proc. Int. Conf. Nucl. Data for Science and Technology. Gatlinburg, 1994. V. 1. P. 269.
  55. Гаврилов В.Д., Гончаров В.А., Иваненко В.А. и др. // Атомная энергия. 1976. Т. 41. № 3. С. 185.
  56. Meeting Nuclear Data Needs for Advanced Reactor Systems. A Report by the Working Party on International Nuclear Data Evaluation Co-operation of the NEA Nuclear Science Committee. Organization for Economic Co-operation and Development. 25-Feb-2014 // NEA/NSC/WPEC/DOC. 2014. 446. 113 p.
  57. Bellanova T.S., Kolesov A.G., Poruchikov V.A. et al. // At. Energy. 1976. V. 40. P. 298.
  58. Cote R.E., Bollinger L.M., Barnes R.F., Diamond H. // Phys. Rev. 1959. V. 114. P. 505. https://doi.org/10.1103/PhysRev.114.505
  59. Ohta M., Nakamura S., Harada H., Fujii T., Yamana H. // J. Nucl. Sci. Technol. (Tokyo). 2006. V. 43. P. 1441. https://doi.org/10.1080/18811248.2006.9711239
  60. Mendoza E., Cano-Ott D., Guerrero C. et al. // Phys. Rev. C. 2014. V. 90. P. 034608. https://doi.org/10.1103/PhysRevC.90.034608
  61. Colonna N., Tsinganisa A., Vlastou R. et al. // Eur. Phys. J. A. 2020. V. 56. P. 48. https://doi.org/10.1140/epja/s10050-020-00037-8
  62. Belloni F., Calviani M., Colonna N. et al. // Eur. Phys. J. A. 2011. V. 47. Iss. 12. P. 160. https://doi.org/10.1140/epja/i2011-11160-x
  63. Patronis N., Eleme Z., Diakaki M. et al. // CERN-INTC-2020-048/INTC-P-566. 21/09/2020.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Reduced cross section σ(E)E1/2 of 241Am fission depending on neutron energy E in the region below 30 eV (a) 80–40 keV (b): squares – INR–IPPE data [14, 15]; circles – Kyoto (KULS) [22]; upward triangles – RRC KI (SVZ-50) [24]; downward triangles – modified RRC KI data. Solid line – ENDF/B-VII.I estimate averaged over the SVZ-100 resolution function (ΔE/E = 0.28).

Download (229KB)
3. Fig. 2. Preliminary experimental data [49] (n_TOF, CERN) for measuring the fission cross section of 241Am(n,f) nuclei in the energy range from a few MeV to MeV at 60% of full statistics (black lines and circles indicating the error). Good agreement with the recommended values ​​of the ENDF/B-VIII.0 (thick line 1) and JEFF-3.3 (thin line 2) libraries in the near-threshold energy range. A region of unresolved resonances (energy greater than 150 eV) is observed. For resolved resonances (less than 150 eV), an overlap of the recommended data and a spread of the measured values ​​are noticeable.

Download (96KB)
4. Fig. 3. Reduced cross section σ(E)E1/2 of fission of 242mAm nuclei depending on neutron energy E in the region below 2 eV (a) and 1 eV – 30 keV (b): circles – INR–IPPE data [14]; line – ENDF/B-VII data; triangles – Oak Ridge results [26]; squares – SVZ-40 data [29]. The ENDF/B-VII and [26] values ​​are averaged over the SVZ-100 resolution function (the ENDF/B-VII estimate is based on the data of [27]).

Download (172KB)
5. Fig. 4. Comparison of the results of measuring the fission cross section of 242mAm(n,f) with the data of other spectrometers and the recommended JENDL-3.3 data (solid line), averaged taking into account the resolution of the SVZ [51]: filled circles – SVZ-40 (KULS, 2012, [51]); empty circles – SVZ-50 (IAE, [24]); squares – SVZ-40 (KULS, 2001, [29]); triangles – SVZ-100 (INR–IPPE, [11]).

Download (79KB)
6. Fig. 5. Reduced cross-section σ(E)E1/2 of 243Am fission depending on neutron energy E: squares – INR–IPPE data [13, 14]; triangles – KULS data [35]; thin line – ENDF/B7 estimate; thick line – JENDL-4.0 estimate; data averaged over the SVZ-100 resolution function.

Download (103KB)

Copyright (c) 2024 Russian Academy of Sciences