Effect of isothermal annealing on the optical properties of Ca3TaGa3Si2O14 crystals

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The effect of post-growth isothermal annealing in vacuum and in air on the optical properties of Ca3TaGa3Si2O14 crystal samples of Z and X-cuts has been studied. Spectral dependences of transmission coefficients were measured in the wavelength range (240–700) nm taking into account anisotropy and dichroism. On the Z-cut samples in the initial state an absorption band at λ = 360 nm in the ultraviolet range is observed, in the visible region – two absorption bands at λ = 460 nm and λ = 605 nm. Additionally, a band at λ = 290 nm was observed on the X-cut samples. When the sample was rotated around the direction of the light beam by 90 degrees, a change in the intensity of the absorption bands was observed. Annealing in vacuum leads to a decrease in the intensity of the absorption bands in the near ultraviolet and visible range, except for the absorption band at λ = 605 nm. Annealing in air leads to the opposite effect – an increase in the intensity of the absorption bands, except for the band λ = 605 nm. The value of the anomalous birefringence of the samples was estimated by the Mallard method. The degree of linear dichroism is calculated. It is shown that the degree of dichroism decreases as a result of annealing in vacuum, and increases during annealing in air.

Texto integral

Acesso é fechado

Sobre autores

G. Deev

National University of Science and Technology “MISIS”

Autor responsável pela correspondência
Email: deew.german@ya.ru
Rússia, 119049, Moscow

N. Kozlova

National University of Science and Technology “MISIS”

Email: deew.german@ya.ru
Rússia, 119049, Moscow

E. Zabelina

National University of Science and Technology “MISIS”

Email: zabelina@misis.ru
Rússia, 119049, Moscow

V. Kasimova

National University of Science and Technology “MISIS”

Email: deew.german@ya.ru
Rússia, 119049, Moscow

S. Pilyushko

National University of Science and Technology “MISIS”

Email: deew.german@ya.ru
Rússia, 119049, Moscow

O. Buzanov

OJSC “FOMOS Materials”

Email: deew.german@ya.ru
Rússia, 107023, Moscow

Bibliografia

  1. Медведев А.В., Медведев А.А., Руденков А.П., Муртазин Р.Р. Исследование температурных характеристик и расчет конструктивных параметров резонаторов на основе монокристаллов Ca3TaGa3Si2O14 // Оптические технологии, материалы и системы (Оптотех – 2020), Москва, Россия, 2020. С. 183.
  2. Kugaenko O.M., Uvarova S.S., Krylov S A., Senatu-lin B.R., Petrakov V.S., Buzanov O.A., Egorov V.N., Sakharov S.A. // Bull. Russ. Acad. Sci. Phys. 2012. V. 76 P. 1258. https://www.doi.org/10.3103/S1062873812110123
  3. Schulz M., Ghanavati R., Kohler F., Wilde J., Fritze H. // J. Sensors Sensor Systems. 2021. V. 10. Iss. 2. P. 271. https://www.doi.org/10.5194/jsss-10-271-2021
  4. Yu F., Chen F., Hou S., Wang H., Wang Y., Tian S., Jiang C., Li Y., Cheng X., Zhao X. High temperature piezoelectric single crystals: Recent developments // 2016 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), Xi'an, China, 2016. P. 1. https://www.doi.org/10.1109/SPAWDA.2016.7829944
  5. Fu X., Víllora E.G., Matsushita Y., Kitanaka Y., Noguchi Y., Miyayama M., Shimamura K., Ohashi N. // J. Ceram. Soc. Jpn. 2016. V. 124. P. 523. https://www.doi.org/10.2109/jcersj2.15293
  6. Chen F., Yu F., Hou S., Liu Y., Zhou Y., Shi X., Wang H., Wang Z., Zhao X. // Cryst. Eng. Comm. 2014. V. 16. P. 10286. https://www.doi.org/10.1039/C4CE01740D
  7. Wang Z.M., Yu W.T., Yuan D.R., Wang X.Q., Xue G., Shi X.Z., Xu D., Lv M.K. // New Cryst. Struct. 2003. V. 218. P. 421.
  8. Каминский А.А. Физика и спектроскопия лазерных кристаллов. М.: Наука, 1986. 271 с.
  9. Takeda H, Sugiyama K, Inaba K, Shimamura R., Fukuda T. // Jpn J. Appl. Phys. 1997. V. 36. № 7B. P. 919. https://www.doi.org/10.1143/JJAP.36.L919
  10. Takeda H., Sato J., Kato T., Kawasaki K., Morikoshi H., Shimamura K., Fukuda T. // Mater. Res. Bull. 2000. V. 35. P. 245. https://www.doi.org/10.1016/S0025-5408(00)00201-4
  11. Yokota Y., Sato M., Futami Y., Tota K., Yanagida T., Onodera K., Yoshikawa A. // J. Cryst. Growth. 2012. V. 352. P. 147. https://www.doi.org/10.1016/j.jcrysgro.2012.01.012
  12. Nozawa J., Zhao H., Koyama C., Maeda K., Fujiwara K., Koizumi H., Uda S. // J. Cryst. Growth. 2016. V. 454. P. 82. https://www.doi.org/10.1016/j.jcrysgro.2016.09.005
  13. H. Kimura, S. Uda, O. Buzanov, X. Huang, Koh S. // J. Electroceramics, 2008. V. 20. P. 73. https://www.doi.org/10.1007/s10832-007-9349-2
  14. Taishi T., Hayashi T., Bamba N., Ohno Y., Yonenaga I., Hoshikawa W. // J. Phys. B. 2007. V. 401. P. 437. https://www.doi.org/10.1016/j.physb.2007.08.206
  15. Kozlova N.S., Kozlova A.P., Spassky D.A., Zabeli- na E.V. // IOP Conf. Series: Mater. Sci. Engineer. 2017. V. 169. Iss. 1. P. 012018. https://www.doi.org/10.1088/1757-899X/169/1/012018
  16. Wang J., Yin X., Zhang S., Kong Y., Zhang Y., Hu X., Jiang M. // Opt. Mater. 2003. V. 23 P. 393. https://www.doi.org/10.1016/S0925-3467(02)00325-7
  17. Панич А.А., Мараховский М.А., Мотин Д.В. // Инженерный вестник Дона. 2011. Т. 15. № 1. С. 53.
  18. Yu F., Zhao X., Pan L., Li F., Yuan D., Zhang S. // J. Phys. D: Appl. Phys. 2010. V. 43. Iss. 16. P. 165402. https://www.doi.org/10.1088/0022-3727/43/16/165402
  19. Кугаенко О.М., Базалевская С.С., Сагалова Т.Б., Петраков В.С., Бузанов О.А., Сахаров С.А. // Извес- тия РАН. Сер. физическая. 2014. Т. 78. №. 10. С. 1322. https://www.doi.org/10.7868/S0367676514100135
  20. Kozlova N.S., Buzanov O.A., Kozlova A.P., Zabe- lina E.V., Goreeva Zh.A., Didenko I.S., Kasimova V.M., Chernykh A.G. // Crystallogr. Rep. 2018. V. 63. P. 216. https://www.doi.org/10.1134/S1063774518020128
  21. Забелина Е.В., Козлова Н.С., Бузанов О.А. // Оптика и спектроскопия. 2023 (в печати)
  22. Shi X., Yuan D., Wei A., Wang Z., Wang B. // Mater. Res. Bull. 2006. V. 41. P. 1052. https://www.doi.org/10.1016/j.materresbull.2005.11.019

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Diagram of the installation of X-slice samples during the experiment. a is the first position, b is the second position.

Baixar (120KB)
3. Fig. 2. Spectral dependences of transmission coefficients of samples of the Z-section of CTGS in the initial state (1); after annealing in vacuum at 1000 °C (2); after annealing in air at 1200 °C (3).

Baixar (181KB)
4. Fig. 3. Spectral dependences of the transmission coefficients of samples of X-sections of CTGS in the first (a, b) and second (c, d) positions: in the initial state (1); after annealing in vacuum at 1000 ° C (2); after annealing in air at 1200 ° C (3).

Baixar (642KB)
5. Fig. 4. Spectral dependences of the degree of dichroism of samples of X-sections of CTGS in the initial state (1); after annealing in vacuum at 1000 ° C (2); after annealing in air at 1200 °C (3).

Baixar (154KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024