Free Volume in Amorphous Alloys and Its Change under External Influences

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The effect of excess free volume on the structure and crystallization of amorphous metal alloys is considered. Its change is an important characteristic of such alloys. Changes in the free volume during structural relaxation, aging, heat treatment, deformation, and irradiation are given. It is shown that the excess free volume fraction in the material depends on the alloy composition and the conditions for its production and changes under various external influences, which can contribute to both a decrease and an increase in the fraction. An increased fraction of excess free volume affects the physical properties, the evolution of the structure, and also contributes to the acceleration of the crystallization of the amorphous phase. The ability to control the free volume fraction in a sample opens up new ways to control the structure and, as a result, the properties of materials.

作者简介

G. Abrosimova

Institute of Solid State Physics RAS

编辑信件的主要联系方式.
Email: gea@issp.ac.ru
Russia, 142432, Chernogolovka

A. Aronin

Institute of Solid State Physics RAS

编辑信件的主要联系方式.
Email: aronin@issp.ac.ru
Russia, 142432, Chernogolovka

参考

  1. Willens R.H., Klement W., Duwez P. // J. Appl. Phys. 1960. V. 31 P. 1136. https://doi.org/10.1063/1.1735777
  2. Trexler M.M., Thadhani N.N. // Prog. Mater. Sci. 2010. V. 55. P. 759. https://doi.org/10.1016/j.pmatsci.2010.04.002
  3. Hasani S., Rezaei-Shahreza P., Seifoddini A., Hakimi M. // J. Non-Cryst. Solids. 2018. V. 497. P. 40. https://doi.org/10.1016/j.jnoncrysol.2018.05.021
  4. Cohen M.H.,Turnbull D. // J. Chem. Phys. 1959. V. 31. P. 1164.
  5. Doolittle A.K. // J. Appl. Phys. 1951. V. 22. P. 1471.
  6. Turnbull D., Cohen M.H. // J. Chem. Phys. 1961. V. 34. P. 120.
  7. Cohen M.H., Grest G.S. // Phys. Rev. B. 1979. V. 20. P. 1077.
  8. Wen P., Tang M.B., Pan M.X., Zhao D.Q., Zhang Z., Wang W.H. // Phys. Rev. B. 2003. V. 67. P. 212201.
  9. Haruyama O., Inoue A. // Appl. Phys. Lett. 2006. V. 88. P. 131906.
  10. Yavari A.R., Moulec A.L., Inoue A., Nishiyama N., Lupu N., Matsubara E., Botta W.J., Vaughan G., Michiel M.D., Kvick Å. // Acta Mater. 2005. V. 53. P. 1611.
  11. Rätzke K., Hüppe P.W., Faupel F. // Phys. Rev. Lett. 1992. V. 68. P. 2347.
  12. Dmowski W., Iwashita T., Chuang C. P., Almer J., Egami T. // Phys. Rev. Lett. 2010. V. 105. P. 205502.
  13. Ramachandrarao P., Cantor B., Cahn R.W. // J. Non-Crystal. Solids. 1977. V. 24. P.109.
  14. Cohen M.H., Grest G.S. // Phys. Rev. B 1979. V. 20. P. 1077.
  15. Chen S., Xu D., Zhang H., Chen H., Liu Y., Liang T., Yin Z., Jiang Sh.,Yang K., Zeng J., Lou H., Zeng Zh., Zeng Q. // Phys. Rev. B. 2022. V. 105. P. 144201. https://doi.org/10.1103/PhysRevB.105.144201
  16. Ramachandrarao P., Cantor B., Cahn R.W. // J. Mater. Sci. 1977. V. 12. P. 2488.
  17. Cahn R.W. Rapid Solidification Processing: Principles and Technologies / Eds. R. Mehrabian et al. LA: Clattor’s Baton Rouge, 1978.
  18. Chen L.Y., Fu Z.D., Zhang G.Q., Hao X.P., Jiang Q.K., Wang X.D., Cao Q.P., Franz H., Liu Y.G., Xie H.S., Zhang S.L., Wang B.Y., Zeng Y.W., Jiang J.Z. // Phys. Rev. Lett. 2008. V. 100. P. 075501.
  19. Murali P., Ramamurty U. // Acta Mater. 2005. V. 53. P. 1467.
  20. Ketov S.V., Sun Y.H., Nachum S., Lu Z., Checchi A., Beraldin A.R., Bai H.Y., Wang W.H., Louzguine-Luzgin D.V., Carpenter M.A. // Nature. 2015. V. 524. P. 200.
  21. Abrosimova G., Volkov N., Pershina E., Tran Van Tuan, Aronin A. // J. Non-Cryst. Solids. 2019. V. 528. P. 119751. https://doi.org/10.1016/j.jnoncrysol.2019.119751
  22. Taub A.I., Spaepen F. // Acta Metall. 1980. V. 28. P. 1781.
  23. Ruitenberg G., Hey P.D., Sommer F., Sietsma J. // Phys. Rev. Lett. 1997. V. 79. P. 4830.
  24. Xu Y., Fang J., Gleiter H., Horst H., Li J. // Scr. Mater. 2010. V. 62. P. 674.
  25. Slipenyuk A., Eckert J. // Scr. Mater. 2004 V. 50. P. 39.
  26. Launey M.E., Kruzic J.J., Li C., Busch R. // Appl. Phys. Lett. 2007. V. 91. P. 051913.
  27. Egami T. // Mat. Res. Bull. 1978. V. 13. P. 557.
  28. Liebermann H.H., Graham C.D., Flanders P.J., Jr. // IEEE Trans. Mag. 1977. V. MAG-13. P. 1541.
  29. Williams R., Egami T. // IEEE Trans. Mag. 1976. V. MAG-12. P. 927.
  30. Egami T. // J. Am. Ceram. Soc. 1977. V. 60. P. 128.
  31. Chen H.S., Leamy H.J., Barmatz M. // J. Non-Cryst. Solids. 1970. V. 5. P. 444.
  32. Soshiroda T., Koiwa M., Masumoto T. // J. Non-Cryst. Solids. 1976. V. 21. P. 688.
  33. Berry B.S., Pritchet W.C. // Phys. Rev. Lett. 1975. V. 34. P. 1022.
  34. Chou C.-P.P., Turnbull D. // J. Non-Cryst. Solids. 1975. V. 17. P. 169.
  35. Gunderov D., Astanin V., Churakova A., Sitdikov V., Ubyivovk E., Islamov A., Jing Tao Wang // Metals. 2020. V. 10. P. 1433. https://doi.org/10.3390/met10111433
  36. Nishiyama N., Horino M., Inoue A. // Mater. Trans JIM. 2000. V. 41. № 11. P. 1432. https://doi.org/10.2320/matertrans1989.41.1432
  37. Chen H.S. // J. Appl. Phys. 1978. V. 49. P. 3289. https://doi.org/10.1063/1.325279
  38. Meng F., Tsuchiya K., Seiichiro I.I., Yokoyama Y. // Appl. Phys. Lett. 2012. V. 101. № 12. P. 121914. https://doi.org/10.1063/1.4753998
  39. Boltynjuk E., Gunderov D., Ubyivovk E., Monclús M., Yang L., Molina-Aldareguia J., Tyurin A., Kilmametov A., Churakova A., Churyumov A. // J. Alloys Compd. 2018. V. 747. P. 595. https://doi.org/10.1016/j.jallcom.2018.03.018
  40. Aronin A.S., Louzguine-Luzgin D.V. // Mechan. Mater. 2017. V. 113. № 10. P. 19. https://doi.org/10.1016/j.mechmat.2017.07.007
  41. Mironchuk B., Abrosimova G., Bozhko S., Pershina E., Aronin A. // J. Non-Crystal. Solids. 2022. V. 571. P. 121279. https://doi.org/10.1016/j.jnoncrysol.2021.121279
  42. Li Q.-K., Li M. // Mater.Trans. 2007. V. 48. № 7. P. 1816. doi: 102320/matertrans.MJ200875
  43. Jiang W.H., Atzmon M. // Acta Mater. 2003. V. 51. № 14. P. 4095. https://doi.org/10.1016/S1359-6454(03)00229-5
  44. Maaß R., Birckigt P., Borchers C., Samwer K., Volkert C.A. // Acta Mater. 2015. V. 98. P. 94. https://doi.org/10.1016/j.actamat.2015.06.062
  45. Greer A.L., Cheng Y.Q., Ma E. // Mater. Sci. Eng. R. 2013. V. 74. № 4. P. 71. https://doi.org/10.1016/j.mser.2013.04.001
  46. Rösner H., Peterlechner M., Kübel Ch., Schmidt V., Wilde G. // Ultramicroscopy. 2014. V. 142. № 7. P. 1. https://doi.org/10.1016/j.ultramic.2014.03.006
  47. Schmidt V., Rösner H., Peterlechler M., Wilde G. // Phys. Rev. Lett. 2015. V. 115. № 7. P. 035501. https://doi.org/10.1103/PhysRevLett.115.035501
  48. Абросимова Г.Е., Матвеев Д.В., Аронин А.С. // УФН. 2022. Т. 192. № 3. P. 247. https://doi.org/10.3367/UFNr.2021.04.038974
  49. Gunderov D., Astanin V., Churakova A., Sitdikov V., Ubyivovk E., Islamov A., Wang J.T. // Metals. 2020. V. 10. № 11. P. 1433. https://doi.org/10.3390/met10111433
  50. Chen Y.M., Ohkubo T., Mukai T., Hono K. // J. Mater. Res. 2009. V. 24. P. 1. https://doi.org/10.1557/jmr.2009.0001
  51. He J., Kaban I., Mattern N., Song K., Sun B., Zhao J., Kim D. H., Eckert J., Greer A.L. // Sci. Rep. 2016. V. 6. P. 25832. https://doi.org/10.1038/srep25832
  52. Liu C., Roddatis V., Kenesei P., Maaß R. // Acta Mater. 2017. V. 140. P. 206. https://doi.org/10.1016/j.actamat.2017.08.032
  53. Chen Z.Q., Huang L., Wang F., Huang P., Lu T.J., Xu K.W. // Mater. Design. 2016. V. 109. P. 179. https://doi.org/10.1016/j.matdes.2016.07.069
  54. Abrosimova G., Chirkova V., Pershina E., Volkov N., Sholin I., Aronin A. // Metals. 2022. V. 12. P. 332. https://doi.org/10.3390/met12020332
  55. Cremaschi V., Arcondo B., Sirkin H., Vazquez M., Asenjo A., Garcia J.M., Abrosimova G., Aronin A. // J. Mater. Res. 2000. V. 15. № 9. P. 1936. https://doi.org/10.1557/JMR.2000.0279
  56. Abrosimova G.E., Aronin A.S., Kir’janov Yu.V., Matveev D.V., Zver’kova I.I., Molokanov V.V., Pan S., Slipenyuk A. // J. Mater. Sci. 2001. V. 36. № 16. P. 3933.
  57. Abrosimova G., Matveev D., Pershina E., Aronin A. // Mater. Lett. 2016. V. 183. P. 131. https://doi.org/10.1016/j.matlet.2016.07.053
  58. Abrosimova G., Aronin A. // Mater. Lett. 2017. V. 206. P. 64. https://doi.org/10.1016/j.matlet.2017.06.098
  59. Абросимова Г.Е., Аронин А.С. // ФТТ. 2017. Т. 59. Вып. 11. С. 2227.
  60. Hirata A., Guan P., Fujita T., Hirotsu Y., Inoue A., Yavary A., Sakurai T., Chen M. // Nature Mater. 2011. V. 10. P. 28. https://doi.org/10.1038/nmat2897
  61. Abrosimova G., Aronin A., Budchenko A. // Mater. Lett. 2015. V. 139. P. 194. https://doi.org/10.1016/j.matlet.2014.10.076
  62. Abrosimova G.E., Aronin A.S. // Int. J. Rapid Solidif. 1991. V. 6. P. 29.
  63. Абросимова Г.Е., Аронин А.С., Волков Н.А. // ФТТ. 2019. Т. 61. С. 1352.
  64. Volkov N., Abrosimova G., Aronin A. // Mater. Lett. 2019. V. 265. P. 127431. https://doi.org/10.1016/j.matlet.2020.127431
  65. Абросимова Г.Е. // УФН. 2011. Т. 181. № 12. С. 1265. https://doi.org/10.3367/UFNr.0181.201112b.1265
  66. Doi K. // J. Non-Cryst. Solids 1979. V. 34. P. 405.
  67. Gerling R. // Scripta Met. 1982. V. 16. P. 963.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (568KB)
3.

下载 (217KB)
4.

下载 (123KB)
5.

下载 (76KB)
6.

下载 (161KB)
7.

下载 (84KB)
8.

下载 (187KB)
9.

下载 (797KB)

版权所有 © Г.Е. Абросимова, А.С. Аронин, 2023