Analysis of Structures at the Boundary of Contact Melting Al–Mg–Mn and Zn Based Alloys

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The processes of contact melting of the AMg6 (Al-6%Mg-1%Mn) alloy with Zn–Cu–Al solder and the model Zn–Al alloy, as well as the structure of the contact fusion zone, are studied. Samples were obtained in two stages. At the first step, the solder was mechanically applied (tinned) to the surface of the AMg6 plates. Аt the second step, the resulting composite samples were subjected to heat treatment with a varied exposure time in the liquid state. According to the data of metallographic and X-ray diffraction analyses, as well as differential scanning calorimetry, it was shown that already at the tinning stage the active interaction between Zn and Al occurs, which leads to the formation of a developed microstructure in the joint zone. The presence of copper in the solder HTS-2000 reduces the melting point of the Zn-Al alloy by 30-40°C and improves the conditions for contact interaction with the grade AMg6 matrix. Active diffusion of zinc ensures the formation of an extensive melting zone during heat treatment, while zinc-rich areas during crystallization contain the Zn5Cu intermetallic phase, which prevents the formation of intermetallic ZnxMgy compounds, which does not lead to embrittlement of the contact zone.

全文:

受限制的访问

作者简介

E. Batalova

Udmurt Federal Research Center, UB RAS

编辑信件的主要联系方式.
Email: elizaveta.smagina.97@mail.ru
俄罗斯联邦, Izhevsk

L. Kamaeva

Udmurt Federal Research Center, UB RAS

Email: lara_kam@mail.ru
俄罗斯联邦, Izhevsk

I. Shutov

Udmurt State University

Email: elizaveta.smagina.97@mail.ru
俄罗斯联邦, Izhevsk

M. Korolev

Udmurt State University

Email: elizaveta.smagina.97@mail.ru
俄罗斯联邦, Izhevsk

M. Krivilev

Udmurt Federal Research Center, UB RAS; Udmurt State University

Email: elizaveta.smagina.97@mail.ru
俄罗斯联邦, Izhevsk; Izhevsk

参考

  1. Алюминиевые сплавы. Состав, свойства, технология, применение. / Ред. Белецкий В.М. Киев: Коминтех, 2005. 365 с.
  2. Бродова И.Г., Попель П.С., Барбин Н.М., Ватолин Н.А. Исходные расплавы как основа формирования структуры и свойств алюминиевых расплавов. Екатеринбург: УрО РАН, 2005. 367 с.
  3. Kamaeva L.V., Lad’yanov V.I., Ryltsev R.E., Chtchelkatchev N.M. // J. Molecular Liquids. 2020. V. 299. P. 112207. https://doi.org/10.1016/j.molliq.2020.114636
  4. Баталова Е.А., Камаева Л.В. // Химическая физика и мезоскопия. 2021. Т. 23. № 3. С. 325. https://doi.org/10.15350/17270529.2021.3.29
  5. Камаева Л.В., Корепанов А.Ю., Ладьянов В.И. // Теплофизика высоких температур. 2018. Т. 56. № 4. С. 534. https://doi.org/10.1134/S0040364419020066
  6. Бельтюков А.Л., Стерхова И.В., Ладьянов В.И., Хуснутдинов Р.М., Мокшин А.В. // Журнал физической химии. 2022. Т. 96. № 12. С. 1724. https://doi.org/10.31857/S004445372212007X
  7. Бродова И.Г., Ширинкина И.Г., Распосиенко Д.Ю., Акопян Т.К. // Физика металлов и металловедение. 2020. Т. 121. № 9. С. 987. https://doi.org/10.31857/S001532302009003X
  8. Бродова И.Г., Кленов А.Н., Ширинкина И.Г., Смирнов Е.Б., Орлова Н.Ю. // Физика металлов и металловедение. 2021. Т. 122. № 12. С. 1309. https://doi.org/10.31857/S0015323021120032
  9. Шуркин П.К., Белов Н.А., Мусин А.Ф., Аксенов А.А. // Известия высших учебных заведений. Цветная металлургия. 2020. № 1. С. 48. https://doi.org/10.17073/0021-3438-2020-1-48-58
  10. Справочник по пайке. / Ред. Лоцманов С.Н., Петрунин И.Е. и д.р. М.: Машиностроение, 1975.
  11. Измайлов В.В., Новоселова М.В. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 8. С. 64. https://doi.org/10.31857/S1028096022050119
  12. Карамурзов Б.С., Кутуев Р.А., Понежев М.Х., Созаев В.А., Шерметов А.Х., Шокаров А.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2021. № 6. С. 109. https://doi.org/10.31857/S1028096021030055
  13. Sekulic D.P., Galenko P.K., Krivilyov M.D., Walker L., Gao F. // Int. J. Heat Mass Transf. 2005. № 12. P. 2372. https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.034
  14. Shutov I.V., Kamaeva L.V., Krivilyov M.D., Yu C.-N., Mesarovic S.Dj., Sekulic D.P. // J. Crystal Growth. 2020. V. 530. P. 125287. https://doi.org/10.1016/j.jcrysgro.2019.125287
  15. Bazhenov V.E., Pashkov I.N., Pikunov M.V., Cheverikin V.V. // Mater. Sci. Technol. 2016. V. 32. №8. P. 752. https://doi/org//10.1179/1743284715Y.0000000135
  16. Bazhenov V.E., Pikunov M.V., Pashkov I.N. // Russ. Metall. 2018. V. 2018. № 5. P. 445. https://doi.org/10.1134/S0036029518050026
  17. Shapiro L.A. // Welding Journal. 2009. V. 88. № 10. P. 43.
  18. Шутов И.В., Камаева Л.В., Баталова Е.А., Королев М.Н., Кривилев М.Д. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 8. C. 80. https://doi.org/10.31857/S1028096022080167
  19. Sterkhova I.V., Kamaeva L.V. // J. Non-Cryst. Solids. 2014. V. 401. P. 250. https://dx.doi.org/10.1016/j.jnoncrysol.2014.01.027
  20. Диаграммы состояния двойных металлических систем: Справочник: В 3 т.: Т. 1 / Ред. Лякишев Н.П. М.: Машиностроение, 1996. 992 с.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Morphology of the initial samples: AMg6 alloy (a), HTS-2000 solder (b) and Zn97.5Al2.5 alloy (c)

下载 (625KB)
3. Fig. 2. DSC curves of the initial alloys (a): HTS-2000 solder (1) and Zn97.5Al2.5 alloy (2), as well as AMg6 (b) when heated at a rate of v = 10°C/min

下载 (147KB)
4. Fig. 3. Morphology (a) and radiograph (b) of the solder layer after its mechanical application (tinning) to the surface of AMg6

下载 (349KB)
5. Fig. 4. Morphology (a) and RSA data (b) of HTS-2000 solder after heating to a temperature of 400 °C and cooling with v = 50-100°C/min

下载 (570KB)
6. Fig. 5. Thermogram of DSC heating with v = 10°C/min of HTS-2000/AMg6 composite obtained after tinning

下载 (55KB)
7. Fig. 6. Morphology of HTS-2000/AMg6 composites after heat treatment of TO1 (a–b) and TO2 (g–e)

下载 (781KB)
8. Fig. 7. Distribution of HTS-2000 solder components on the AMg6 substrate after TO2 according to energy dispersion analysis (a) along a line including various phases on the surface of the strip (b)

下载 (333KB)
9. Fig. 8. The structure of the Zn97.5Al2.5 alloy in the area of contact with AMg6 after TO2

下载 (236KB)

版权所有 © Russian Academy of Sciences, 2024