Synthesis of thin films of magnesium aluminate spinel by Al and Mg anodic evaporation

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The structure and properties of alumomagnesium spinel films synthesized by reactive anodic evaporation of Al and Mg from individual crucibles in a low–pressure arc (Ar/O2 mixture at 0.7–1.2 Pa) and vapor condensation on a substrate at 400–600°C were investigated. The current of a discharge with a self–heated hollow cathode was distributed between the anode (10–30 A) and crucibles with Mg (0.8–1.6 A) and Al (4–16 A), which provided an independent change in the deposition rate of films, plasma density, partial pressures of metal vapors and concentrations of elements in the films. A decrease in the rate of Mg oxidation and stabilization of the evaporation process were achieved by increasing the power density of the electron flux on the Mg inside the crucible and transition from the evaporation by sublimation to the evaporation from the liquid state by reducing the aperture of the Mg crucible. The high density of Mg vapor flow in a small aperture prevents oxygen from entering the crucible. The crystallization temperature of spinel under conditions of bombardment of the growing film by ions with an energy of 25–100 eV at a current density of 2 mA/cm2 was ~400°C. The films were characterized by scanning electron microscopy, X-ray phase analysis and microhardness measurements. Cubic spinel films had a strong texture (100) and a micro-distortion level of the crystal lattice of ~1%. The deposition rate of non-stoichiometric spinel films with a relative content of Al and Mg atoms adjustable within 1.2–2.4 was 1–3 µm/h.

作者简介

N. Gavrilov

Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences; Ural Federal University named after the first President of Russia B.N. Yeltsin

编辑信件的主要联系方式.
Email: gavrilov@iep.uran.ru
俄罗斯联邦, Yekaterinburg; Yekaterinburg

D. Emlin

Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences

Email: erd@iep.uran.ru
俄罗斯联邦, Yekaterinburg

А. Medvedev

Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: gavrilov@iep.uran.ru
俄罗斯联邦, Yekaterinburg

P. Skorynina

Institute of Engineering Science of the Ural Branch of the Russian Academy of Sciences

Email: gavrilov@iep.uran.ru
俄罗斯联邦, Yekaterinburg

参考

  1. Гаврилов Н.В., Каменецких А.С., Емлин Д.Р., Третников П.В., Чукин А.В. // Журнал технической физики. 2019. Т. 89. № 6. С. 867. https://www.doi.org/10.21883/JTF.2019.06.47632.214-18
  2. Каменецких А.С., Гаврилов Н.В., Третников П.В., Чукин А.В., Меньшаков А.И., Чолах С.О. // Известия Вузов. Физика. 2020. Т. 63. № 10. С. 144. https://www.doi.org/10.17223/00213411/63/10/144
  3. Ahmad S.M., Hussain T., Ahmad R., Siddiqui J., Ali D. // Mater. Res. Express. 2018. № 5. P. 016415. https://www.doi.org/10.1088/2053-1591/aaa828
  4. Ganesh I. // Int. Mater. Rev. 2013. V. 58. № 2. P. 63. https://www.doi.org/10.1179/1743280412Y.0000000001
  5. Zhang J., Stauf G.T., Gardiner R., Buskirk P.V., Steinbeck J. // J. Mater. Res. 1994. V. 9. № 6. P. 1333. https://www.doi.org/10.1557/JMR.1994.1333
  6. Putkonen M., Nieminen M., Niinisto L. // Thin Solid Films. 2004. V. 466. P. 103. https://www.doi.org/10.1016/j.tsf.2004.02.078
  7. Станчик А.В., Гременок В.Ф., Труханова Е.Л., Хорошко В.В., Сулейманов С.Х., Дыскин В.Г., Джанклич М.У., Кулагина Н.А., Амиров Ш.Е. // Computational Nanotechnology. 2022. V. 9. № 1. P. 125. https://www.doi.org/10.33693/2313-223X-2022-9-1-125-131
  8. Wang Y., Xie X., Zhu C. // ACS Omega. 2022. V. 7. P. 12617. https://www.doi.org/10.1021/acsomega.1c06583
  9. Saraiva M., Georgieva V., Mahieu S., van Aeken K., Bogaerts A., Depla D. // J. Appl. Phys. 2010. № 7. Р. 034902. https://www.doi.org/10.1063/1.3284949
  10. Honig R.E. // RCA Rev. 1957. V. 18. P. 195.
  11. Depla D., Mahieu S. Reactive sputter deposition. Springer Series in Materials Science. Berlin Heidelberg: Springer-Verlag, 2008. 584 р. https://www.doi.org/10.1007/978-3-540-76664-3
  12. Гаврилов Н.В., Каменецких А.С., Паранин С.Н., Спирин А.В., Чукин А.В. // Приборы и техника эксперимента. 2017. № 5. C. 136. https://www.doi.org/10.7868/S0032816217040152
  13. Eriksson K.B.S., Isberg H.B.S. // Ark. Fys. 1963. V. 23. Iss. 47. P. 527.
  14. Meißner K.W. // Ann. Phys. 1938. V. 423. P. 505.
  15. Зимон А.Д. Адгезия пленок и покрытий. Москва: Химия, 1977. 352 с.
  16. TOPAS V. 3.0 (2005) Brucker AXS GmbH, Karlsruhe. www. bruker-axs.de
  17. Domanski D., Urretavizcaya G., Castro F.J., Gennari F.C. // J. Am. Ceram. Soc. 2004. V. 87. № 11. P. 2020. https://www.doi.org/10.1111/j.1151-2916.2004.tb06354.x
  18. Georgieva V., Saraiva M., Jehanathan N., Lebelev O.I., Depla D., Bogaerts A. // J. Phys. D: Appl. Phys. 2009. V. 42. P. 065107. https://www.doi.org/10.1088/0022-3727/42/6/065107
  19. Henkelman G., Uberuaga B.P., Harris D.J., Harding J.H., Allan N.L. // Phys. Rev. B: Condens. Matter. 2005. V. 72. P. 115437. https://www.doi.org/10.1103/PhysRev B.72.115437
  20. Yusupov M., Saraiva M., Depla D., Bogaerts A. // New J. Phys. 2012. V. 14. P. 073043. https://www.doi.org/10.1088/1367-2630/14/7/073043.
  21. Dash S., Sahoo R.K., Das A., Bajpai S., Debasish D., Saroj K.S. // J. Alloys Compd. 2017. V. 726. P. 1186. https://www.doi.org/10.1016/j.jallcom.2017.08.085
  22. Shou-Yong J., Li-Bin L., Ning-Kang H., Jin Z., Yong L. // J. Mater. Sci. Lett. 2000. V. 19. P. 225. https://www.doi.org/10.1023/A:1006710808718
  23. Шеховцов В.В., Скрипникова Н.К., Улмасов А.Б. // Вестник ТГАСУ. 2022. Т. 24. № 3. C. 138. https://www.doi.org/10.31675/1607-1859-2022-24-3-138-146
  24. Murphy S.T., Gilbert C.A., Smith R., Mitchell T.E., Grimes R.W. // Philosophical Magazine. 2010. V. 90. № 10. Р. 1297. https://www.doi.org/10.1080/14786430903341402

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024