Prospects for biomedical application of aerogels in dentistry
- Authors: Bazikyan E.A.1, Klinovskaya A.S.1, Chunikhin A.A.1
-
Affiliations:
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
- Issue: Vol 25, No 2 (2021)
- Pages: 207-212
- Section: Reviews
- URL: https://rjdentistry.com/1728-2802/article/view/105075
- DOI: https://doi.org/10.17816/1728-2802-2021-25-2-207-212
Cite item
Abstract
Aerogels, having unique properties and good biodegradability, can be used as matrices and be carriers of active pharmaceuticals, which, in turn, suggests the possibility of their wide use in dentistry, in particular in such industries as maxillofacial surgery and surgical dentistry. Thus, aerogels seem to be an ideal material for creating new generation carrier matrices.
Keywords
Full Text

About the authors
Ernest A. Bazikyan
A.I. Yevdokimov Moscow State University of Medicine and Dentistry
Email: prof.bazikian@gmail.com
ORCID iD: 0000-0002-9184-3737
MD, Dr. Sci. (Med.), Professor
Russian Federation, 20, p. 1, Delegatskaya str, Moscow, 127473Anna S. Klinovskaya
A.I. Yevdokimov Moscow State University of Medicine and Dentistry
Author for correspondence.
Email: klinskaya@inbox.ru
ORCID iD: 0000-0002-4295-8757
MD, Cand. Sci. (Med.), Associate Professor
Russian Federation, 20, p. 1, Delegatskaya str, Moscow, 127473Andrey A. Chunikhin
A.I. Yevdokimov Moscow State University of Medicine and Dentistry
Email: docca74@yandex.ru
ORCID iD: 0000-0002-9054-9464
MD, Dr. Sci. (Med.), Professor
Russian Federation, 20, p. 1, Delegatskaya str, Moscow, 127473References
- Robustova TG, Bazikyan EA, Ushakov AI, et al. Comprehensive clinical and radiological approach for reconstructive surgery and sinus-lifting in the upper jaw area during dental implantation. Russian dentistry. 2008;1(1):61–68. (In Russ).
- Goncharov IY, Bazikyan EA, Bychkov AI. The use of hydroxyapol in the replacement of bone defects in the jaws and the stimulation of osteogenesis. Dentistry. 1996;75(5):54–56. (In Russ).
- Babashov VG, Varrik NM. High-temperature flexible fibrous heat-insulating material. Trudy Vserossiiskogo nauchno-issledovatel'skogo instituta aviatsionnykh materialov. 2015;(1):3. (In Russ).
- Buchilin NV, Lyulyukina GY. Features of sintering of highly porous ceramic materials based on aluminum oxide. Aviation materials and technologies. 2016;(4):40–46. (In Russ). doi: 10.18577/2071-9140-2016-0-4-40-46
- Babashov VG, Varrik NM, Karaseva TA. The use of aerogels for creating heat-insulating materials (review). Trudy Vserossiiskogo nauchno-issledovatel'skogo instituta aviatsionnykh materialov. 2019;(6):32–42. (In Russ). doi: 10.18577/2307-6046-2019-0-6-32-42
- Kablov EN. From what to make the future? Materials of the new generation, technologies of their creation and processing-the basis of innovation. Kryl'ia Rodiny. 2016;(5):8–18. (In Russ).
- Lovskaya DD, Katalevich AM, Lebedev AE. Aerogels-modern drug delivery systems. Uspekhi v khimii i khimicheskoi tekhnologii. 2013;27(1):79–85. (In Russ).
- Labis VV, Bazikyan EA, Kozlov IG, et al. Nanoscale particles - participants of osseointegration. Bulletin of the Orenburg Scientific Center of the Ural Branch of the Russian Academy of Sciences. 2016;(1):5. (In Russ).
- Fabrikant EG, Gurevich KG, Kirsanova SV, Bazikyan EA. Comparative sensitivity of general and specialized questionnaires of quality of life in partial absence of teeth. Dentist. 2011;(11):22–26. (In Russ).
- Bazikyan EA, Syrnikova NV, Chunikhin AA. Promising laser technologies in the treatment of periodontal diseases. Periodontology. 2017;22(3):55–59. (In Russ).
- Gusev AI. Nanomaterials, nanostructures, nanotechnologies. Moscow: Fizmatlit; 2007. 416 p. (In Russ).
- Ivanov SI, Tsygankov PY, Khudeev II, Menshutina NV. Obtaining hydrophobic aerogels. Uspekhi v khimii i khimicheskoi tekhnologii. 2015;29(4):112–114. (In Russ).
- Kablov EN. Innovative developments of FSUE "VIAM" of the State Research Center of the Russian Federation on the implementation of Strategic directions for the development of materials and technologies for their processing for the period up to 2030. Aviatsionnye materialy i tekhnologii. 2015;(1):3–33. (In Russ).
- Igami M, Okazaki T. The current state of nanotechnology: Patent analysis. Foresight. 2008;(3):32–43. (In Russ).
- Menshutina NV, Smirnova IV, Gurikov PA. Aerogels – new nanostructured materials: preparation, properties and biomedical application. Training manual. Moscow: D.I. Mendeleev Russian State Technical University; 2012. 60 p. (In Russ).
- Salerno A, Pascual CD. Bio-based polymers, supercritical fluids and tissue engineering. Process Biochemistry. 2015;50(5):826–838. doi: 10.1016/j.procbio.2015.02.009
- Alvarez-Lorenzo C, Concheiro A. Bioinspired drug delivery systems. Current Opinion in Biotechnology. 2013;24(6):1167–1173. doi: 10.1016/j.copbio.2013.02.013
- Shin SR, Li YC, Jang HL, et al. Graphene-based materials for tissue engineering. Advanced Drug Delivery Reviews. 2016;105(Part B):255–274. doi: 10.1016/j.addr.2016.03.007
- Sabri F, Cole JA, Scarbrough MC, Leventis N. Investigation of polyurea-crosslinked silica aerogels as a neuronal scaffold: a pilot study. PLOS One. 2012;7(3):e33242. doi: 10.1371/journal.pone.0033242
- Ivanov SI, Tsygankov PYu, Khudeev II, Menshutina NV. Introduction of carbon nanotubes into inorganic aerogels in different ways. In: VIII Scientific and Practical Conference with International participation "Supercritical fluids (SCF): fundamental bases, technologies, innovations": collection of theses. Moscow: ZAO Shag; 2015. Р. 93–95. (In Russ).
- Martins M, Quraishi S, Gurikov P, Barros A. Preparation of macroporous alginate-based aerogels for biomedical applications. J Super Fluids. 2015;106:152–159. doi: 10.1016/j.supflu.2015.05.010
- Eleftheriadis GK, Filippousi M, Tsachouridou V, et al. Evaluation of mesoporous carbon aerogels as carriers of the non-steroidal anti-inflammatory drug ibuprofen. Int J Pharm. 2016;515(1-2):262–270. doi: 10.1016/j.ijpharm.2016.10.008
- Gonçalves VS, Gurikov P, Poejo J, et al. Alginate-based hybrid aerogel microparticles for mucosal drug delivery. Eur J Pharm Biopharm. 2016;107:160–170. doi: 10.1016/j.ejpb.2016.07.003
- Valo H, Arola S, Laaksonen P, et al. Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur J Pharm Biopharm. 2013;50(1):69–77. doi: 10.1016/j.ejps.2013.02.023
- Del Gaudio P, Auriemma G, Mencherini T, et al. Design of alginate-based aerogel for nonsteroidal anti-inflammatory drugs controlled delivery systems using prilling and supercritical-assisted drying. J Pharm Sci. 2013;102(1):185–194. doi: 10.1002/jps.23361
