Prospects for biomedical application of aerogels in dentistry

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Aerogels, having unique properties and good biodegradability, can be used as matrices and be carriers of active pharmaceuticals, which, in turn, suggests the possibility of their wide use in dentistry, in particular in such industries as maxillofacial surgery and surgical dentistry. Thus, aerogels seem to be an ideal material for creating new generation carrier matrices.

Full Text

Restricted Access

About the authors

Ernest A. Bazikyan

A.I. Yevdokimov Moscow State University of Medicine and Dentistry

Email: prof.bazikian@gmail.com
ORCID iD: 0000-0002-9184-3737

MD, Dr. Sci. (Med.), Professor

Russian Federation, 20, p. 1, Delegatskaya str, Moscow, 127473

Anna S. Klinovskaya

A.I. Yevdokimov Moscow State University of Medicine and Dentistry

Author for correspondence.
Email: klinskaya@inbox.ru
ORCID iD: 0000-0002-4295-8757

MD, Cand. Sci. (Med.), Associate Professor

Russian Federation, 20, p. 1, Delegatskaya str, Moscow, 127473

Andrey A. Chunikhin

A.I. Yevdokimov Moscow State University of Medicine and Dentistry

Email: docca74@yandex.ru
ORCID iD: 0000-0002-9054-9464

MD, Dr. Sci. (Med.), Professor

Russian Federation, 20, p. 1, Delegatskaya str, Moscow, 127473

References

  1. Robustova TG, Bazikyan EA, Ushakov AI, et al. Comprehensive clinical and radiological approach for reconstructive surgery and sinus-lifting in the upper jaw area during dental implantation. Russian dentistry. 2008;1(1):61–68. (In Russ).
  2. Goncharov IY, Bazikyan EA, Bychkov AI. The use of hydroxyapol in the replacement of bone defects in the jaws and the stimulation of osteogenesis. Dentistry. 1996;75(5):54–56. (In Russ).
  3. Babashov VG, Varrik NM. High-temperature flexible fibrous heat-insulating material. Trudy Vserossiiskogo nauchno-issledovatel'skogo instituta aviatsionnykh materialov. 2015;(1):3. (In Russ).
  4. Buchilin NV, Lyulyukina GY. Features of sintering of highly porous ceramic materials based on aluminum oxide. Aviation materials and technologies. 2016;(4):40–46. (In Russ). doi: 10.18577/2071-9140-2016-0-4-40-46
  5. Babashov VG, Varrik NM, Karaseva TA. The use of aerogels for creating heat-insulating materials (review). Trudy Vserossiiskogo nauchno-issledovatel'skogo instituta aviatsionnykh materialov. 2019;(6):32–42. (In Russ). doi: 10.18577/2307-6046-2019-0-6-32-42
  6. Kablov EN. From what to make the future? Materials of the new generation, technologies of their creation and processing-the basis of innovation. Kryl'ia Rodiny. 2016;(5):8–18. (In Russ).
  7. Lovskaya DD, Katalevich AM, Lebedev AE. Aerogels-modern drug delivery systems. Uspekhi v khimii i khimicheskoi tekhnologii. 2013;27(1):79–85. (In Russ).
  8. Labis VV, Bazikyan EA, Kozlov IG, et al. Nanoscale particles - participants of osseointegration. Bulletin of the Orenburg Scientific Center of the Ural Branch of the Russian Academy of Sciences. 2016;(1):5. (In Russ).
  9. Fabrikant EG, Gurevich KG, Kirsanova SV, Bazikyan EA. Comparative sensitivity of general and specialized questionnaires of quality of life in partial absence of teeth. Dentist. 2011;(11):22–26. (In Russ).
  10. Bazikyan EA, Syrnikova NV, Chunikhin AA. Promising laser technologies in the treatment of periodontal diseases. Periodontology. 2017;22(3):55–59. (In Russ).
  11. Gusev AI. Nanomaterials, nanostructures, nanotechnologies. Moscow: Fizmatlit; 2007. 416 p. (In Russ).
  12. Ivanov SI, Tsygankov PY, Khudeev II, Menshutina NV. Obtaining hydrophobic aerogels. Uspekhi v khimii i khimicheskoi tekhnologii. 2015;29(4):112–114. (In Russ).
  13. Kablov EN. Innovative developments of FSUE "VIAM" of the State Research Center of the Russian Federation on the implementation of Strategic directions for the development of materials and technologies for their processing for the period up to 2030. Aviatsionnye materialy i tekhnologii. 2015;(1):3–33. (In Russ).
  14. Igami M, Okazaki T. The current state of nanotechnology: Patent analysis. Foresight. 2008;(3):32–43. (In Russ).
  15. Menshutina NV, Smirnova IV, Gurikov PA. Aerogels – new nanostructured materials: preparation, properties and biomedical application. Training manual. Moscow: D.I. Mendeleev Russian State Technical University; 2012. 60 p. (In Russ).
  16. Salerno A, Pascual CD. Bio-based polymers, supercritical fluids and tissue engineering. Process Biochemistry. 2015;50(5):826–838. doi: 10.1016/j.procbio.2015.02.009
  17. Alvarez-Lorenzo C, Concheiro A. Bioinspired drug delivery systems. Current Opinion in Biotechnology. 2013;24(6):1167–1173. doi: 10.1016/j.copbio.2013.02.013
  18. Shin SR, Li YC, Jang HL, et al. Graphene-based materials for tissue engineering. Advanced Drug Delivery Reviews. 2016;105(Part B):255–274. doi: 10.1016/j.addr.2016.03.007
  19. Sabri F, Cole JA, Scarbrough MC, Leventis N. Investigation of polyurea-crosslinked silica aerogels as a neuronal scaffold: a pilot study. PLOS One. 2012;7(3):e33242. doi: 10.1371/journal.pone.0033242
  20. Ivanov SI, Tsygankov PYu, Khudeev II, Menshutina NV. Introduction of carbon nanotubes into inorganic aerogels in different ways. In: VIII Scientific and Practical Conference with International participation "Supercritical fluids (SCF): fundamental bases, technologies, innovations": collection of theses. Moscow: ZAO Shag; 2015. Р. 93–95. (In Russ).
  21. Martins M, Quraishi S, Gurikov P, Barros A. Preparation of macroporous alginate-based aerogels for biomedical applications. J Super Fluids. 2015;106:152–159. doi: 10.1016/j.supflu.2015.05.010
  22. Eleftheriadis GK, Filippousi M, Tsachouridou V, et al. Evaluation of mesoporous carbon aerogels as carriers of the non-steroidal anti-inflammatory drug ibuprofen. Int J Pharm. 2016;515(1-2):262–270. doi: 10.1016/j.ijpharm.2016.10.008
  23. Gonçalves VS, Gurikov P, Poejo J, et al. Alginate-based hybrid aerogel microparticles for mucosal drug delivery. Eur J Pharm Biopharm. 2016;107:160–170. doi: 10.1016/j.ejpb.2016.07.003
  24. Valo H, Arola S, Laaksonen P, et al. Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur J Pharm Biopharm. 2013;50(1):69–77. doi: 10.1016/j.ejps.2013.02.023
  25. Del Gaudio P, Auriemma G, Mencherini T, et al. Design of alginate-based aerogel for nonsteroidal anti-inflammatory drugs controlled delivery systems using prilling and supercritical-assisted drying. J Pharm Sci. 2013;102(1):185–194. doi: 10.1002/jps.23361

Copyright (c) 2021 Eco-Vector



Свидетельство о регистрации СМИ № 015648 от 14.05.1999 г. выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор). 
Свидетельство о регистрации СМИЭЛ № ФС 77 - 80635 от 15.03.2021 г. выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies