Dynamics of the demineralization of temporary teeth using ultrasonic shadow velosymmetry and autofluorescence microscopy in vitro

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Given the high prevalence of caries in preschool children, additional methods for diagnosing hidden carious foci with deep structural demineralization of the hard tissues of temporary teeth without generating X-rays must be updated.

AIM: To improve methods for studying the demineralization of hard tissues of primary teeth using ultrasonic shadow velosymmetry and autofluorescence microscopy.

MATERIALS AND METHODS: The study included primary second molars (n=11). Samples of primary teeth were placed in a test tube with a demineralizing solution on days 1, 4, 8, 21, and 31. The samples were examined by autofluorescence microscopy and ultrasonic shadow velosymmetry according to the exposure time. The rate of acid demineralization of the primary teeth samples was assessed using our score scale. The averages were compared using the Wilcoxon W-test (p <0.05). Pearson correlation analysis was used, taking into account the statistical significance of the correlation coefficients for p <0.05.

RESULTS: Analysis of samples of hard tissues of primary teeth by ultrasonic shadow velosymmetry showed that the velocity of the ultrasonic wave passage decreases with increasing exposure to the demineralizing solution and acquires a linear character with a negative regression coefficient. The decrease in the ultrasonic wave velocity in the enamel and dentin of the samples directly correlated with the degree of demineralization.

CONCLUSION: The conducted experiment on the hard tissues of primary teeth showed that demineralization not only leads to micromorphological structural changes in the hard tissues of enamel and dentin but also affects the physical and acoustic properties of the samples.

Full Text

Restricted Access

About the authors

Alexey G. Sedoykin

Moscow State University of Medicine and Dentistry named after A.I. Evdokimov

Author for correspondence.
Email: alexdokt_01@mail.ru
ORCID iD: 0000-0001-6740-3363
SPIN-code: 2966-5210

MD, Cand. Sci. (Med.), Assistant Professor

Russian Federation, 9a Vucheticha street, 127206 Moscow

Sergey N. Ermolyev

Moscow State University of Medicine and Dentistry named after A.I. Evdokimov

Email: ermoljev_s@hotmail.com
ORCID iD: 0000-0002-4219-3547
SPIN-code: 7109-4050

MD, Dr. Sci. (Med.), Professor

Russian Federation, 9a Vucheticha street, 127206 Moscow

Larisa P. Kiselnikova

Moscow State University of Medicine and Dentistry named after A.I. Evdokimov

Email: lpkiselnikova@mail.ru
ORCID iD: 0000-0003-2095-9473
SPIN-code: 2429-8388

MD, Dr. Sci. (Med.), Professor

Russian Federation, 9a Vucheticha street, 127206 Moscow

Alexander M. Zatevalov

G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology

Email: zatevalov@mail.ru
ORCID iD: 0000-0002-1460-4361
SPIN-code: 3718-6127

Dr. Sci. (Biol.), Professor

Russian Federation, Moscow

Alexandra A. Fokina

Moscow State University of Medicine and Dentistry named after A.I. Evdokimov

Email: fokina.aleksandra@yandex.ru
ORCID iD: 0000-0003-0522-2860
SPIN-code: 7473-9750

Postgraduate Student

Russian Federation, 9a Vucheticha street, 127206 Moscow

References

  1. Macey R, Walsh T, Riley P, et al. Fluorescence devices for the detection of dental caries. Cochrane Database Syst Rev. 2020;12(12):CD013811. doi: 10.1002/14651858.CD013811
  2. Sedoykin AG, Kiselnikova LP, Ermolyev SN, Fokina AA, Toma EI. Study of enamel and dentin zones in permanent teeth in children by ultrasonic microdensitometry. Proceedings of the Scientific Research Institute of Health Organization and Medical Management: collection of scientific papers. 2022;(2):103–106. (In Russ).
  3. Mazur M, Jedliński M, Ndokaj A, et al. Diagnostic drama. Use of ICDAS II and fluorescence-based intraoral camera in early occlusal caries detection: A clinical study. Int J Environ Res Public Health. 2020;17(8):2937. doi: 10.3390/ijerph17082937
  4. Patent RUS № 2790947C1/ 28.02.23. Sedoykin AG, Fokina AA, Ermolyev SN, Kiselnikova LP, Yanushevich OO, Tekucheva SV. Method of ultrasonic bilosymmetry for assessing the state of hard tissues of teeth.
  5. Chien YC, Burwell AK, Saeki K, et al. Distinct decalcification process of dentin by different cariogenic organic acids: Kinetics, ultrastructure and mechanical properties. Arch Oral Biol. 2016;63:93–105. doi: 10.1016/j.archoralbio.2015.10.001
  6. Boyarkin EV, Kochetkov AS, Bekher SA. Physical foundations of ultrasound control. Exam preparation guide. Novosibirsk: Izd-vo SGUPS; 2018. (In Russ).
  7. Wang LJ, Tang R, Bonstein T, Bush P, Nancollas GH. Enamel demineralization in primary and permanent teeth. J Dent Res. 2006;85(4):359–363. doi: 10.1177/154405910608500415
  8. Zatsepin AF. Acoustic control. Shcherbinin VE, editor. Ekaterinburg: Izd-vo Ural’skogo universiteta; 2016. (In Russ).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Fixation of the sample of a primary tooth between the receiving and transmitting piezoelectric transducers of the dental ultrasound densitometer: 1 — in the enamel zone, 2 — in the dentin zone.

Download (3MB)
3. Fig. 2. Working graphical interface of the program Denta.32.

Download (194KB)
4. Fig. 3. Micrographs of the primary tooth sample in the three main operating modes obtained on the 0, 4, 8, 21, 31 days of the experiment: without autofluorescence irradiation (AFI), with AFI, with AFI and a yellow light filter.

Download (381KB)
5. Fig. 4. Dynamics of demineralization according to the integral indicator of changes in average (median) score values in a group of samples on the 0, 4, 8, 21, 31 days of the experiment.

Download (45KB)
6. Fig. 5. Changes in the velocity of the ultrasonic wave fixed during the entire exposure time of the samples in the demineralizing solution by the ultrasonic shadow velosymmetry method. Asterisk (*) marks indicators with statistically significant differences with the measurement in the previous exposure for each material calculated according to the Wilcoxon W-test (p <0,05).

Download (102KB)
7. Fig. 6. Scattering diagram of ultrasonic wave velocity indicators in the enamel and dentine of primary teeth samples.

Download (169KB)

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86295 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80635 от 15.03.2021 г
.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies