Detecting structural and functional mitochondrial abnormalities in periodontal tissues using an experimental periodontitis model

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Background: Recent research indicates that mitochondrial dysfunction plays a significant role in the development and progression of oral inflammation, such as periodontitis and pulpitis.

Aim: To assess structural and functional mitochondrial abnormalities in periodontal tissues using an experimental periodontitis model in rats.

Materials and methods: The study used male Wistar rats aged 4 months, with a body weight of 221.0±7.5 g. Simple randomization was used to divide the animals into two groups (n=10 each). Group 1 (control) consisted of intact animals, while Group 2 consisted of animals with experimentally induced periodontitis. A ligature-induced periodontitis model was used, with a non-absorbable polyfilament thread sutured into the gum near the mandibular incisors. Histological examinations were used to validate the experimental periodontitis model. The following molecular genetic and biochemical parameters were assessed: nuclear DNA and mitochondrial DNA (mtDNA) damage, abundance and heteroplasmy of mtDNA, mitochondrial gene expression, and levels of hydrogen peroxide (H2O2), malondialdehyde, and reduced glutathione.

Results: The resulting experimental periodontitis model revealed histological changes in periodontal tissues, indicating periodontitis in the animals. On day 14 after ligation, histological findings showed that Group 2 had more significant mtDNA damage and heteroplasmy in periodontal tissues than Group 1 (control). Moreover, Group 2 showed a decrease in the expression of mtDNA genes involved in adenosine triphosphate synthesis. This group also had lower glutathione levels and higher H2O2 and malondialdehyde levels than the control group.

Conclusion: The experimental periodontitis model in rats revealed structural and functional mitochondrial abnormalities in periodontal tissues. New approaches to assessing mitochondrial function in periodontitis may facilitate the diagnosis and treatment of the disease and its complications.

全文:

受限制的访问

作者简介

Albina Abdullaeva

Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

编辑信件的主要联系方式.
Email: albi.95@mail.ru
ORCID iD: 0009-0002-0538-7454
SPIN 代码: 4355-9186

MD

俄罗斯联邦, Moscow

Valentina Olesova

Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

Email: olesova@implantat.ru
ORCID iD: 0000-0002-3461-9317
SPIN 代码: 6851-5618

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Moscow

David Akopov

Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

Email: akopov.85@bk.ru
ORCID iD: 0009-0000-0603-9406

MD

俄罗斯联邦, Moscow

Serazhutdin Abdullaev

Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

Email: saabdullaev@gmail.com
ORCID iD: 0000-0002-1396-0743
SPIN 代码: 3485-8990

Dr. Sci. (Biology)

俄罗斯联邦, Moscow

参考

  1. Herrera D, Sanz M, Shapira L, et al. Periodontal diseases and cardiovascular diseases, diabetes, and respiratory diseases: Summary of the consensus report by the European Federation of Periodontology and WONCA Europe. Eur J Gen Pract. 2024;30(1):2320120. doi: 10.1080/13814788.2024.2320120
  2. Wu KCH, Liu L, Xu A, et al. Shared genetic architecture between periodontal disease and type 2 diabetes: a large scale genome-wide cross-trait analysis. Endocrine. 2024;85(2):685–694. doi: 10.1007/s12020-024-03766-8
  3. Tsimpiris A, Tsolianos I, Grigoriadis A, et al. Association of chronic periodontitis with helicobacter pylori infection in stomach or mouth: a systematic review and meta-analysis. Eur J Dent. 2023;17(2):270–282. doi: 10.1055/s-0042-1756690
  4. Aguiar FJN, Menezes FDS, Fagundes MA, et al. Gastric adenocarcinoma and periodontal disease: A systematic review and meta-analysis. Clinics (Sao Paulo). 2024;79:100321. doi: 10.1016/j.clinsp.2023.100321
  5. Miklyaev SV, Leonova OM, Sushchenko AV. Analysis of the prevalence of chronic inflammatory diseases of periodontal tissues. Modern Problems of Science and Education. 2018;(2):15. EDN: XNYEHR
  6. Zhang J, Yu, J, Dou J, et al. The impact of smoking on subgingival plaque and the development of periodontitis: a literature review. Front Oral Health. 2021;2:751099. doi: 10.3389/froh.2021.751099
  7. Coll PP, Lindsay A, Meng J, et al. The prevention of infections in older adults: oral health. J Am Geriatr Soc. 2020;68(2):411–416. doi: 10.1111/jgs.16154
  8. Graziani F, Karapetsa D, Alonso B, Herrera D. Nonsurgical and surgical treatment of periodontitis: how many options for one disease? Periodontol 2000. 2017;75(1):152–188. doi: 10.1111/prd.12201
  9. Li L, Zhang YL, Liu XY, et al. Periodontitis exacerbates and promotes the progression of chronic kidney disease through oral flora, cytokines, and oxidative stress. Front Microbiol. 2021;12:656372. doi: 10.3389/fmicb.2021.656372
  10. Govindaraj P, Khan NA, Gopalakrishna P, et al. Mitochondrial dysfunction and genetic heterogeneity in chronic periodontitis. Mitochondrion. 2011;11(3):504–512. doi: 10.1016/j.mito.2011.01.009
  11. Tomokiyo A, Wada N, Maeda H. Periodontal ligament stem cells: regenerative potency in periodontium. Stem Cells Dev. 2019;28(15):974–985. doi: 10.1089/scd.2019.0031
  12. Zhang Z, Deng M, Hao M, Tang J. Periodontal ligament stem cells in the periodontitis niche: inseparable interactions and mechanisms. J Leukoc Biol. 2021;110(3):565–576. doi: 10.1002/JLB.4MR0421-750R
  13. Dela Cruz CS, Kang MJ. Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion. 2018;41:37–44. doi: 10.1016/j.mito.2017.12.001
  14. Chen Y, Ji Y, Jin X, et al. Mitochondrial abnormalities are involved in periodontal ligament fibroblast apoptosis induced by oxidative stress. Biochem Biophys Res Commun. 2019;509(2):483–490. doi: 10.1016/j.bbrc.2018.12.143
  15. Savkina AA, Lengert EV, Ermakov AV, et al. Effects of the gel containing microcapsules with silver nanoparticles loaded with metronidazole on the state of the gingival microcirculation in animals with experimental periodontitis. Regionarnoe krovoobrashhenie i mikrocirkuljacija. 2023;22(3):78–85. EDN: KBAKNN doi: 10.24884/1682-6655-2023-22-3-78-85
  16. Ionel A, Lucaciu O, Moga M, et al. Periodontal disease induced in Wistar rats — experimental study. HVM Bioflux. 2015;7(2):90–95.
  17. Abdullaev S, Gubina N, Bulanova T, Gaziev A. Assessment of nuclear and mitochondrial DNA, expression of mitochondria-related genes in different brain regions in rats after whole-body X-ray irradiation. Int J Mol Sci. 2020;21(4):1196. doi: 10.3390/ijms21041196
  18. Abdullaev SA, Glukhov SI, Gaziev AI. Radioprotective and radiomitigative effects of melatonin in tissues with different proliferative activity. Antioxidants (Basel). 2021;10(12):1885. doi: 10.3390/antiox10121885
  19. Abdullaev SA, Glukhov, SI, Gaziev AI. Melatonin reduces radiation damage to the spleen and increases survival when administered before and after the exposure of mice to X-ray radiation. Biology Bulletin. 2023;50(11):3069–3076. doi: 10.1134/S1062359023110018
  20. Abdullaev S, Bulanova T, Timoshenko G, Gaziev AI. Increase of mtDNA number and its mutant copies in rat brain after exposure to 150 MeV protons. Mol Biol Rep. 2020;47(6):4815–4820. doi: 10.1007/s11033-020-05491-7
  21. Moretton A, Morel F, Macao B, et al. Selective mitochondrial DNA degradation following double-strand breaks. PLoS One. 2017;12(4):e0176795. doi: 10.1371/journal.pone.0176795
  22. Peeva V, Blei D, Trombly G, et al. Linear mitochondrial DNA is rapidly degraded by components of the replication machinery. Nat Commun. 2018;9(1):1727. doi: 10.1038/s41467-018-04131-w
  23. Zhao L. Mitochondrial DNA degradation: A quality control measure for mitochondrial genome maintenance and stress response. Enzymes. 2019;45:311–341. doi: 10.1016/bs.enz.2019.08.004
  24. Golpich M, Amini E, Mohamed Z, et al. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: pathogenesis and treatment. CNS Neurosci Ther. 2017;23(1):5–22. doi: 10.1111/cns.12655
  25. Hunt RJ, Bateman JM. Mitochondrial retrograde signaling in the nervous system. FEBS Lett. 2018;592(5):663–678. doi: 10.1002/1873-3468.12890

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Modeling of periodontitis in laboratory animals of the experimental group: a — application of a ligature by sewing a polyfilament non-absorbable thread into the gum in the area of the lower jaw incisors; b — soft tissues of the periodontium of the studied group of animals on the 14th day of the experiment after application of ligatures; staining with fuchsin and picric acid; ×100.

下载 (378KB)
3. Fig. 2. Analysis of nuclear and mitochondrial DNA damage and repair. Amplification of long nDNA (8.7 kilobase pairs) and mDNA (10.9 kilobase pairs) fragments by long-distance quantitative polymerase chain reaction. The results are standardized by measured short nDNA (110 base pairs) and mDNA (117 base pairs) fragments from the same DNA samples. EIPD, experimentally induced periodontal disease; C, control; nDNA, nuclear DNA; mDNA, mitochondrial DNA; PCR, polymerase chain reaction. The data are presented as percentages relative to the control group of rats; * the significance level is p <0.05.

下载 (132KB)
4. Fig. 3. Analysis of total (a) and mutant (b) mitochondrial DNA copies in periodontal tissues. EIPD, experimentally induced periodontal disease group; C, control group; mDNA, mitochondrial DNA. The data are presented as percentages relative to the control group of rats; * the significance level is p <0.05.

下载 (97KB)
5. Fig. 4. Expression of mDNA genes involved in oxidative phosphorylation (ATP6, ND2, CytB) in soft periodontal tissues of rats with experimentally induced periodontal disease (EIPD). The data are presented as percentages relative to the control group of rats (C); * the significance level is p <0.05.

下载 (102KB)
6. Fig. 5. Changes in H2О2, malondialdehyde (MDA), and glutathione concentrations in soft periodontal tissues of rats with experimentally induced periodontal disease (EIPD). The data are presented as percentages relative to the control group of rats (C); * the significance level is p < 0.05.

下载 (125KB)

版权所有 © Eco-Vector, 2024



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86295 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80635 от 15.03.2021 г
.