Digital planning of orthodontic dental treatment: A literature review
- Authors: Apresyan S.V.1, Stepanov A.G.1, Moskovec O.O.1, Malieva E.A.1
-
Affiliations:
- Peoples’ Friendship University of Russia
- Issue: Vol 28, No 6 (2024)
- Pages: 601-611
- Section: Reviews
- Submitted: 08.08.2024
- Accepted: 04.10.2024
- Published: 22.12.2024
- URL: https://rjdentistry.com/1728-2802/article/view/634964
- DOI: https://doi.org/10.17816/dent634964
- ID: 634964
Cite item
Abstract
This paper presents data on the incidence of malocclusion. It discusses the advantages of digital impressions over analog impressions in dental practice. The literature on software, digital planning methods, and the features of modern orthodontic treatment devices used in dentistry is reviewed. Comparative characteristics of each proposed method are provided. Furthermore, the potential applications of combination planning approaches, such as cone beam computed tomography and intraoral scanning, are discussed.
The review describes in detail the most common digital solutions used by dentists during orthodontic treatment planning, as well as their advantages and disadvantages.
Full Text

About the authors
Samvel V. Apresyan
Peoples’ Friendship University of Russia
Email: dr.apresyan@gmail.com
ORCID iD: 0000-0002-3281-707X
SPIN-code: 6317-9002
MD, Dr. Sci. (Medicine), Associate Professor
Russian Federation, 6 Mikluho-Maklaja street, 117198 MoscowAlexandr G. Stepanov
Peoples’ Friendship University of Russia
Author for correspondence.
Email: stepanovmd@list.ru
ORCID iD: 0000-0002-6543-0998
SPIN-code: 5848-6077
MD, Dr. Sci. (Medicine), Associate Professor
Russian Federation, 6 Mikluho-Maklaja street, 117198 MoscowOksana O. Moskovec
Peoples’ Friendship University of Russia
Email: om.stomat@gmail.com
ORCID iD: 0000-0002-6479-8192
SPIN-code: 2318-6028
MD, Cand. Sci. (Medicine), Associate Professor
Russian Federation, 6 Mikluho-Maklaja street, 117198 MoscowEllina A. Malieva
Peoples’ Friendship University of Russia
Email: malieva-elina@mail.ru
ORCID iD: 0009-0001-5586-1743
Russian Federation, 6 Mikluho-Maklaja street, 117198 Moscow
References
- Tsvetkova MA, Aksamit LA. Orthodontics and pathology of the oral mucosa. Moscow: MEDpress-inform; 2023. 96 p. (In Russ.) ISBN: 978-5-907632-84-4
- Persin LS. Orthodontics. National guidelines: Treatment of dental anomalies: in 2 volumes. Vol. 2. Moscow: GEOTAR-Media; 2020. 376 p. (In Russ.) doi: 10.33029/9704-5409-1-2-ONRD-2020-1-376
- Laganà G, Venza N, Borzabadi-Farahani A, et al. Dental anomalies: prevalence and associations between them in a large sample of non-orthodontic subjects, a cross-sectional study. BMC Oral Health. 2017;17(1):62. doi: 10.1186/s12903-017-0352-y
- Kuroedova VD, Makarova AN. The prevalence of dental anomalies in adults and the proportion of asymmetric forms among them. Svit medicini ta biologii. 2012;8(4):031–035. (In Russ.) EDN: PONXAT
- Lepilin AV, Dmitrienko SV, Domenyuk DA, et al. Dependence of stress strain of dental hard tissues and periodont on horizontal deformation degree. Archive Euromedica. 2019;9(1):173–194. EDN: VMYAFR doi: 10.35630/2199-885X/2019/9/1/173
- Yuzbasioglu E, Kurt H, Turunc R, Bilir H. Comparison of digital and conventional impression techniques: evaluation of patients’ perception, treatment comfort, effectiveness and clinical outcomes. BMC Oral Health. 2014;14:10. doi: 10.1186/1472-6831-14-10
- Mangano F, Gandolfi A, Luongo G, Logozzo S. Intraoral scanners in dentistry: a review of the current literature. BMC Oral Health. 2017;17(1):149. doi: 10.1186/s12903-017-0442-x
- Saccomanno S, Saran S, Vanella V, et al. The potential of digital impression in orthodontics. Dent J (Basel). 2022;10(8):147. doi: 10.3390/dj10080147
- Pahuja N, Doneria D, Mathur S. Comparative evaluation of accuracy of intraoral scanners vs conventional method in establishing dental measurements in mixed dentition. World J Dent. 2023;14 (5):419–424. doi: 10.5005/jp-journals-10015-2231
- Arsenina OI, Komarova AV, Popova NV. Digital technologies for treatment of class ii patients with musculo-articular dysfunction. Ortodontija. 2022;99(3):28–33. EDN: GQFKPP
- Ivanov SYu, Dmitrienko SV, Domenyuk DA, et al. Variability of morphometric parameters of dental arches and bone structures of the temporomandibular joint in physiological variants of occlusive relationships. The Dental Institute. 2021;(3):44–47. EDN: JWFDUL
- Hadadpour S, Noruzian M, Abdi AH, et al. Can 3D imaging and digital software increase the ability to predict dental arch form after orthodontic treatment? Am J Orthod Dentofacial Orthop. 2019;156(6):870–877. doi: 10.1016/j.ajodo.2019.07.009
- Ermakov AV, Losev AV. Intraoral scanners in orthodontics review. Russian Journal of Stomatology. 2023;16(3):44–48. EDN: XNCKJQ doi: 10.17116/rosstomat20231603144
- Lee KM. Comparison of two intraoral scanners based on three-dimensional surface analysis. Prog Orthod. 2018;19(1):6. doi: 10.1186/s40510-018-0205-5
- Schlenz MA, Schupp B, Schmidt A, et al. New caries diagnostic tools in intraoral scanners: a comparative in vitro study to established methods in permanent and primary teeth. Sensors (Basel). 2022;22(6):2156. doi: 10.3390/s22062156
- Deferm JT, Schreurs R, Baan F, et al. Validation of 3D documentation of palatal soft tissue shape, color, and irregularity with intraoral scanning. Clin Oral Investig. 2018;22(3):1303–1309. doi: 10.1007/s00784-017-2198-8
- Borodina ID, Grigoryants LS, Gadzhiev MA, et al. Comparative evaluation of the accuracy of the dental arch display using modern intraoral three-dimensional scanners. Russian Journal of Dentistry. 2022;26(4):287–297. EDN: NPAGCH doi: 10.17816/1728-2802-2022-26-4-287-297
- Rybakov A. Optimization of orthodontic treatment based on neural networks, finite element analysis and digital maps of the oral mucosa [dissertation]. Saint Petersburg; 2024. Available from: https://disser.spbu.ru/files/2024/disser_rybakov_aleksandr.pdf (In Russ.) EDN: WCXDWJ
- Rozov RA, Trezubov VN, Shalaginova AV, Koussevitsky LYa. Comparative in vitro evaluation of the accuracy of dental open system scanners. Parodontologiya. 2020;25(3):231–236. EDN: MMDCTO doi: 10.33925/1683-3759-2020-25-3-231-236
- Natsubori R, Fukazawa S, Chiba T, et al. In vitro comparative analysis of scanning accuracy of intraoral and laboratory scanners in measuring the distance between multiple implants. Int J Implant Dent. 2022;8(1):18. doi: 10.1186/s40729-022-00416-4
- Park GH, Son K, Lee KB. Feasibility of using an intraoral scanner for a complete-arch digital scan. J Prosthet Dent. 2019;121(5):803–810. doi: 10.1016/j.prosdent.2018.07.014
- Apresyan SV. Integrated digital planning of dental treatment [dissertation]. Moscow; 2020. Available from: https://www.dissercat.com/content/kompleksnoe-tsifrovoe-planirovanie-stomatologicheskogo-lecheniya (In Russ.) EDN: LWZSAG
- Lin H, Pan Y, Wei X, et al. Comparison of the performance of various virtual articulator mounting procedures: a self-controlled clinical study. Clin Oral Investig. 2023;27(7):4017–4028. doi: 10.1007/s00784-023-05028-9
- Thurzo A, Strunga M, Havlínová R, et al. Smartphone-based facial scanning as a viable tool for facially driven orthodontics? Sensors (Basel). 2022;22(20):7752. doi: 10.3390/s22207752
- Apresyan SV, Stepanov AG, Antonik MM, et al. Complex digital planning of stomatological treatment (practical guide). Apresyan SV, editor. Moscow: Mozartika; 2020. (In Russ). EDN: BFHWAT
- De Vos W, Casselman J, Swennen GR. Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: a systematic review of the literature. Int J Oral Maxillofac Surg. 2009;38(6):609–625. doi: 10.1016/j.ijom.2009.02.028
- Khvostenko EA. Orthodontic treatment of patients with dentition anomalies using fixed devices and orthodontic screws [dissertation abstract]. Moscow; 2023. (In Russ.) EDN: VFHWAF
- Makhortova PI. Clinical and radiological comparison of methods of combined treatment of patients with narrowing of the upper jaw [dissertation]. Moscow; 2020. Available from: https://www.dissercat.com/content/kliniko-rentgenologicheskoe-sravnenie-metodov-kombinirovannogo-lecheniya-patsientov-s-suzhen (In Russ). EDN: TQEVDI
- Vasiliev Yu. A. Digital microfocus technology of radiography in the assessment of the anatomical structure of teeth: an experimental study [dissertation]. Saint Petersburg; 2015. Available from: https://viewer.rsl.ru/ru/rsl01005565409?page=1&rotate=0&theme=white (In Russ). EDN: NEBUBX
- Staroverov NE, Gryaznov AYu, Potrakhov NN, et al. New methods of digital processing of microfocus X-ray images. Medicinskaja tehnika. 2018;6(312):53–55. (In Russ.) EDN: YWIGMX
- Nichipore EA. The possibilities of microfocus cone-beam computed tomography in the visualization of dental materials and foreign objects: an experimental study [dissertation]. Moscow, 2021. Available from: https://dissov.msmsu-portal.ru/image/image/2023/06/02/Диссертация_Ничипор_ЕА.pdf (In Russ.) EDN: VUIOLH
- Pirilä-Parkkinen K, Löppönen H, Nieminen P, et al. Validity of upper airway assessment in children: a clinical, cephalometric, and MRI study. Angle Orthod. 2011;81(3):433–439. doi: 10.2319/063010-362.1
- Apresyan SV, Stepanov AG, Sopotsinsky DV, et al. 3D planning of dental treatment. Methodical manual. Moscow: Novik; 2020. 140 p. (In Russ.)
- Abesi F, Maleki M, Zamani M. Diagnostic performance of artificial intelligence using cone-beam computed tomography imaging of the oral and maxillofacial region: A scoping review and meta-analysis. Imaging Sci Dent. 2023;53(2):101–108. doi: 10.5624/isd.20220224
- Verhelst PJ, Smolders A, Beznik T, et al. Layered deep learning for automatic mandibular segmentation in cone-beam computed tomography. J Dent. 2021;114:103786. doi: 10.1016/j.jdent.2021.103786
- Ahmed N, Abbasi MS, Zuberi F, et al. Artificial intelligence techniques: analysis, application, and outcome in dentistry — a systematic review. Biomed Res Int. 2021;2021:9751564. doi: 10.1155/2021/9751564
- Pethani F. Promises and perils of artificial intelligence in dentistry. Aust Dent J. 2021;66(2):124–135. doi: 10.1111/adj.12812
- Kordass B, Gärtner C, Söhnel A, et al. The virtual articulator in dentistry: concept and development. Dent Clin North Am. 2002;46(3):493–506. doi: 10.1016/s0011-8532(02)00006-X
- Carossa M, Cavagnetto D, Ceruti P, et al. Individual mandibular movement registration and reproduction using an optoeletronic jaw movement analyzer and a dedicated robot: a dental technique. BMC Oral Health. 2020;20(1):271. doi: 10.1186/s12903-020-01257-6
- Revilla-León M, Kois DE, Kois JC. A guide for maximizing the accuracy of intraoral digital scans. Part 1: Operator factors. J Esthet Restor Dent. 2023;35(1):230–240. doi: 10.1111/jerd.12985
- Solaberrieta E, Garmendia A, Minguez R, et al. Virtual facebow technique. J Prosthet Dent. 2015;114(6):751–755. doi: 10.1016/j.prosdent.2015.06.012
- Panteleev VD, Roshchin EM, Panteleev SV. Diagnostics of mandibular articulation disorders in tmj dysfunction patients. Stomatology. 2011;90(1):52–57. (In Russ.) EDN: OYEMWN
- Parhamovich SN, Bitno VL, Bitno MV. Comparative analysis of modern methods for registration of the hinge axis. Modern dentistry. 2020;(1):80–85. EDN: STLWWP
- Grigorenko MP. Digital approaches to diagnosis and treatment of patients with dental arch shape abnormalities [dissertation]. Stavropol; 2024. Available from: https://rusneb.ru/catalog/000199_000009_012687348/ (In Russ.) EDN: CEGQSF
- Arutyunov SD, Gvetadze RSh, Lebedenko IYu, Stepanov AG. Innovative solutions in dentistry. Moscow: Practical Medicine; 2019. (In Russ.) ISBN: 978-5-98811-569-4 EDN: BRABVP ISBN: 978-5-98811-569-4
- Castroflorio T, Sedran A, Parrini S, et al. Predictability of orthodontic tooth movement with aligners: effect of treatment design. Prog Orthod. 2023;24(1):2. doi: 10.1186/s40510-022-00453-0
- Tsolakis IA, Panos P, Papadopoulos MA. Accuracy of the ClinCheck prediction outcome for orthodontic treatment with Invisalign. A 3D digital casts study. Conference: International Symposium, Greek Orthodontic Society. 2022.
- Pilipenko ND, Maksyukov SYu. Accuracy of predicting the upper arch expansion using the ClinCheck software. Russian Journal of Dentistry. 2021:25(2):159–166. EDN: KKYDWU doi: 10.17816/1728-2802-2021-25-2-159-166
- Ryakhovsky AN, Boitsova EA. 3D analysis of the temporomandibular joint and occlusal relationships based on computer virtual simulation. Stomatology.2020;99(2):97–104. EDN: SYSPXL doi: 10.17116/stomat20209902197
- Liang YM, Rutchakitprakarn L, Kuang SH, Wu TY. Comparing the reliability and accuracy of clinical measurements using plaster model and the digital model system based on crowding severity. J Chin Med Assoc. 2018;81(9):842–847. doi: 10.1016/j.jcma.2017.11.011
- Eid HSE, Elhiny OA. Evaluation of an open access generic 3D software for Orthodontic diagnosis and treatment planning. Brazilian Journal of Oral Sciences. 2021;21:e227903. doi: 10.20396/bjos.v21i00.8667903
- Hammam KI, Nassef E, AL Dawltaly M. Comparing program compatibility for dental operators between different in-office clear aligners software. Future Dental Journal. 2024;9(2):111–115. doi: 10.54623/fdj.9027
Supplementary files
