Comparative analysis of comprehensive oral microbiota profiles in patients with periodontitis of varying severity

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: The oral cavity provides a favorable environment for the growth and metabolic activity of diverse microorganisms. This includes both beneficial symbiotic microorganisms and species capable of exerting pathogenic effects on the soft tissues of the periodontium, including certain members of the normal oral microbiota.

AIM: This study aimed to determine the etiopathogenetic role and prevalence of major oral microbial inhabitants in patients with periodontitis and in healthy individuals from the control group.

METHODS: The authors conducted a comparative analysis of the prevalence of various bacterial pathogens in the oral cavity of patients with periodontitis of varying severity and healthy individuals in the control group, and assessed their role in the etiology of periodontal diseases.

RESULTS: Analysis of the oral mucosal and gingival microbiota using both traditional and advanced methods revealed that individuals with various inflammatory periodontal diseases more frequently exhibit alterations in the composition of the periodontal microbiome, including an increased abundance of periodontopathogenic bacteria and pathogenic coccal flora.

CONCLUSION: The concomitant presence of red complex bacteria, Streptococcus pyogenes, and Staphylococcus aureus appears to promote biofilm formation and increases the risk of exopolysaccharide matrix degradation, aligning with clinical features of periodontitis across different severity levels.

Full Text

Restricted Access

About the authors

Nodira T. Nurmatova

Center for Professional Development of Medical Workers

Email: nurmatovanodira@gmail.com
ORCID iD: 0009-0000-5853-4062
Uzbekistan, 51a Parkent st, Tashkent, 100011

Sunnatullo A. Gafforov

Center for Professional Development of Medical Workers

Author for correspondence.
Email: sunnatullogafforov@mail.ru
ORCID iD: 0000-0003-2816-3162
SPIN-code: 9176-2861

MD, Dr. Sci. (Medicine), Professor

Uzbekistan, 51a Parkent st, Tashkent, 100011

Nargiza A. Shadmanova

Center for Retraining and Advanced Training of Personnel in the Field of Sanitary-Epidemiological Welfare and Public Health

Email: shadmanova06@yahoo.com
ORCID iD: 0009-0005-2610-4021
Tashkent

Javohirmirzo D. Odiljonov

Center for Professional Development of Medical Workers

Email: black_prince1112@mail.ru
ORCID iD: 0009-0005-4575-2884
Uzbekistan, 51a Parkent st, Tashkent, 100011

References

  1. Niazy AA. LuxS quorum sensing system and biofilm formation of oral microflora: A short review article. Saudi Dent J. 2021;33(3):116–123. doi: 10.1016/j.sdentj.2020.12.007 EDN: XWGRNP
  2. Carroll KC, Pfaller MA, editors. Manual of Clinical Microbiology (12th edition). Washington: ASM Press; 2019.
  3. Cleatus B, Thirunavukkarasu R, Kumaran S, John J. Oral microbiome and human health. Chapter 8. In: Human and animal microbiome engineering. 2025. P. 139–156. doi: 10.1016/B978-0-443-22348-8.00008-8
  4. De Vos P, George M. Garrity, Dorothy Jones,et al. editors. Bergey’s Manual of Systematic Bacteriology. Volume 3: The Firmicutes. Springer; 2009.
  5. Liu H, Tang Y, Zhang S, et al. Anti-infection mechanism of a novel dental implant made of titanium-copper (TiCu) alloy and its mechanism associated with oral microbiology. Bioact Mater. 2021;8:381–395. doi: 10.1016/j.bioactmat.2021.05.053 EDN: JHDAIM
  6. Idiev G’E. Oral cavity hygiene in non-ferrous metal workers in Russia and Uzbekistan. In: Proceedings of the EPMA World Congress. Pilsen, 2019 Sept 19–22. Available from: https://www.epmanet.eu/latest/events/2019/epma-world-congress-2019
  7. Trtić N, Mori M, Matsui S, et al. Oral commensal bacterial flora is responsible for peripheral differentiation of neutrophils in the oral mucosa in the steady state. J Oral Biosci. 2023;65(1):119–125. doi: 10.1016/j.job.2022.11.002 EDN: WRTYOJ
  8. Garcia LS, editor. Clinical Microbiology Procedures Handbook (4th edition). Washington: ASM Press; 2016.
  9. Guhanraj R, Dhanasekaran D. Functions and molecular interactions of the symbiotic microbiome in oral cavity of humans. Chapter 48. In: Microbial symbionts. 2023. P. 861–883. doi: 10.1016/B978-0-323-99334-0.00013-X
  10. Souza PRM, Dupont L, Mosena G, et al. Variations of oral anatomy and common oral lesions. An Bras Dermatol. 2024;99(1):3–18. doi: 10.1016/j.abd.2023.06.001 EDN: OBGVAP
  11. Abdullayev ShR, Gafforov SA. Clinical and functional state of tissues and organs of the oral cavity in patients with chronic kidney diseases working in the oil refining industry. Eurasian Bulletin of Pediatrics. 2020;(2):67–73.
  12. Ellepola ANB, Khan ZU. Impact of brief exposure to lysozyme and lactoferrin on pathogenic attributes of oral Candida. Int Dent J. 2024;74(5):1161–1167. doi: 10.1016/j.identj.2024.04.003 EDN: RDQXIE
  13. Gafforov SA, Pulatova RS. About the state of oral cavity tissues of patients with specific immunodeficiency conditions of the body. International Journal of Health Systems and Medical Sciences. 2023;2(5):242–247. Available from: https://inter-publishing.com/index.php/IJHSMS/article/view/1794
  14. Paudel D, Uehara O, Giri S, et al. Effect of psychological stress on the oral-gut microbiota and the potential oral-gut-brain axis. Jpn Dent Sci Rev. 2022;58:365–375. doi: 10.1016/j.jdsr.2022.11.003 EDN: UMJAOC
  15. Yamazaki K. Oral-gut axis as a novel biological mechanism linking periodontal disease and systemic diseases: A review. Jpn Dent Sci Rev. 2023;59:273–280. doi: 10.1016/j.jdsr.2023.08.003 EDN: LPWJVZ
  16. Fischer LA, Bittner-Eddy PD, Costalonga M. Major histocompatibility complex II expression on oral langerhans cells differentially regulates mucosal CD4 and CD8 T cells. J Invest Dermatol. 2024;144(3):573–584.e1. doi: 10.1016/j.jid.2023.09.277 EDN: ZGZESY
  17. Prabhu VR, Bhavana K, Nimish PD, et al. Metagenomics: Implications in oral health and disease. Chapter 11. In: Metagenomics: Perspectives, Methods, and Applications. 2nd edition. 2025. P. 265–287. doi: 10.1016/B978-0-323-91631-8.00020-2
  18. Scannapieco FA. Poor oral health in the etiology and prevention of aspiration pneumonia. Clin Geriatr Med. 2023;39(2):257–271. doi: 10.1016/j.cger.2023.01.010 EDN: HCDBBP
  19. Mu R, Chen J. Oral bio-interfaces: properties and functional roles of salivary multilayer in food oral processing. Trends in Food Science & Technology. 2023;132:121–131. doi: 10.1016/j.tifs.2023.01.003 EDN: UCJNGP
  20. Srinivasan M, Thyvalikakath T. Oral cavity and COVID-19: clinical manifestations, pathology, and dental profession. Chapter 8. In: Textbook of SARS-CoV-2 and COVID-19: epidemiology, etiopathogenesis, immunology, clinical manifestations, treatment, complications, and preventive measures. 2024. P. 173–190. doi: 10.1016/B978-0-323-87539-4.00008-7
  21. Nazarov UK, Gafforov SA, Gafforova SS. The state of functional and structural organs of oral cavity in people employed in mining and metallurgical plants. In: Proceeding of The ICECRS. Vol. 6. 2020.
  22. Sobirov A, Shamsiyeva M, Gafforov S. Basing the formation of pathologies of the oral cavity in children and adolescents with cerebral palsy with the help of clinical and laboratory studies. Sciences of Europe. 2024;144:40–45. doi: 10.5281/zenodo.12739930 EDN: EPTELK
  23. Gupta V, Tripathy BC, Gupta N, Prakash J. Significance of the normal microflora of the body. Chapter 2. In: Microbial crosstalk with immune system new insights in therapeutics. 2022. P. 21–38. doi: 10.1016/B978-0-323-96128-8.00008-0

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Gender distribution of patients with purulent-inflammatory diseases of the periodontal complex (group 1) and healthy individuals (group 2), %.

Download (632KB)
3. Fig. 2. Frequency of detection of the main representatives of the Streptococccaceae and Staphylococcaceae families in the examined groups, %. KPS — coagulase-positive staphylococci, KOS — coagulase-negative staphylococci, VGS — viridans group streptococci (α-hemolytic streptococci).

Download (576KB)
4. Fig. 3. Classical method of identification of the main representatives of the Streptococcaceae and Staphylococcaceae families: a — growth of S. aureus on yolk-salt agar, b — growth of S. aureus on DNAse Test Agar, c — growth of S. aureus on blood agar

Download (2MB)
5. Fig. 4. Classical method of identification of the main representatives of the genus Streptococcus from Streptococcus pyogenes. Gram staining, microscopy of representatives of the genus Streptococcus; a, b — potential representatives of the genus Streptococcus, c — gram-positive cocci

Download (6MB)
6. Fig. 5. Identification of isolated isolates using MALDI-TOF mass spectrometry.

Download (3MB)
7. Fig. 6. Classical method of culturing obligate anaerobic microorganisms of the periodontal complex mucosa using anaerobic cultivators (anaerobic aerostats) with systems for creating an oxygen-free atmosphere (GasPak)

Download (1MB)
8. Fig. 7. Comparative assessment of aerobic/facultative anaerobic isolates in different groups, %. CPS — coagulase-positive staphylococci

Download (1MB)
9. Fig. 8. Comparative assessment of the frequency of occurrence of pathogenic microorganisms in participants of two groups examined using the polymerase chain reaction method, %

Download (711KB)

Copyright (c) 2025 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86295 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80635 от 15.03.2021 г
.