New horizons in dental practice: Application of dynamic navigation in implantology, endodontics and maxillofacial surgery



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

ABSTRACT

Dynamic navigation (DN) provides for tracking the position of instruments in real time through a computerized system. Through the use of video tracking systems, DN displays the location of instruments on a computer monitor, enabling doctors to manage them with a high degree of accuracy and control. This technology is especially useful when performing complex and demanding procedures such as endodontic microsurgery, sinus lifting and orthognathic surgery. The purpose of the review is to analyze the literature data on the use of DN technology in dentistry with a special focus on oral implantology, endodontics and maxillofacial surgery, as well as to identify the main disadvantages and advantages of this technique and to propose recommendations for its introduction into widespread clinical practice. As a result of the search, 6,755 publications were extracted from PubMed/MEDLINE, Google Scholar, and eLibrary databases.En, after the selection procedure, 88 articles were included in the review. DN allows doctors to visualize the patient's anatomy before surgery, plan the intervention with high accuracy, and monitor the course of the procedure in real time. This is especially important during complex operations such as dental implantation, where the accuracy of the implant placement is crucial for the success of the treatment. The use of digital technologies also reduces the risk of complications and shortens the duration of the rehabilitation period after surgery. Thus, the introduction of DN into dental practice represents a significant step forward in the development of medicine. These technologies not only improve the quality of medical services, but also make the treatment process safer and more comfortable for patients. In the future, we can expect further development and integration of digital technologies into dentistry, which will lead to the creation of new diagnostic and treatment methods, as well as to an increase in the level of professionalism of doctors.

 

Keywords: Dynamic navigation; endodontics; root canals; implantology; maxillofacial surgery; dentistry; cone beam tomography.

Full Text

Restricted Access

About the authors

Vladimir I Angilov

Rostov State Medical University, Rostov-on-Don, Russian Federation

Author for correspondence.
Email: vladimirangilov58@gmail.com
ORCID iD: 0009-0000-7285-4177

student

Russian Federation

Naida D. Osmanova

Okodent, St. Petersburg, Russian Federation

Email: naidaosmanova18@icloud.com
ORCID iD: 0009-0006-8653-7424

стоматолог-хирург, имплантолог, руководитель в направлении цифрового планирования и навигационной хирургии

Russian Federation

Sabina R. Vakhitova

Bashkir State Medical University, Ufa, Russian Federation

Email: sabinavakhitova@mail.ru
ORCID iD: 0009-0002-6364-9846

Maria S. Ugolkova

I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian
Federation

Email: ugolkovamaria60@gmail.com
ORCID iD: 0009-0008-6182-7411

студент

Russian Federation

Lev E. Chnavayan

I.I.Mechnikov Northwestern State Medical University, Saint Petersburg, Russian Federation

Email: chnavayan2002@gmail.com
ORCID iD: 0009-0009-8094-5162

student

Russian Federation

Emma P. Arutyunyan

Rostov State Medical University, Rostov-on-Don, Russian Federation

Email: emliebe@mail.ru
ORCID iD: 0009-0004-1761-4938

student

Russian Federation

Darina V. Gukezheva

N.I. Pirogov Russian National Research Medical University (Pirogov University), Moscow,
Russian Federation

Email: lsanieva@inbox.ru
ORCID iD: 0009-0003-9080-5979

студент

Russian Federation

Anna S. Pesnya

N.I. Pirogov Russian National Research Medical University (Pirogov University), Moscow,
Russian Federation

Email: nnnklsk@mail.ru
ORCID iD: 0009-0003-9922-6471

student

Tamara A. Rybakova

Kuban State Medical University, Krasnodar, Russian Federation

Email: tdosycheva@bk.ru
ORCID iD: 0009-0006-6343-0237

student

Russian Federation

Evelina D. Lupenko

Kuban State Medical University, Krasnodar, Russian Federation

Email: lupenko.evelina@yandex.ru
ORCID iD: 0009-0009-2749-3099

student

Russian Federation

Liana I. Latypova

Bashkir State Medical University, Ufa, Russian Federation

Email: whlcg@bk.ru
ORCID iD: 0009-0001-1906-2223

student

Russian Federation

Sofya K. Efimova

Rostov State Medical University, Rostov-on-Don, Russian Federation

Email: sofya.efimova.2001@bk.ru
ORCID iD: 0009-0008-5635-084X

student

Russian Federation

Sofiko D. Zakaraya

Rostov State Medical University, Rostov-on-Don, Russian Federation

Email: szakarayaaaa@mail.ru
ORCID iD: 0009-0001-0522-8966
Russian Federation

References

  1. Varfolomeev DI. A new method of distal blocking of intramedullary implants. Science and Innovations in Medicine. 2022;7(4):275-280. (In Russ.). doi: 10.35693/2500-1388-2022-7-4-275-280
  2. Blinova AV, Rumyantsev VA. Nanomaterials in the modern dentistry (review). Stomatology. 2021;100(2):103‑109. (In Russ.) doi: 10.17116/stomat2021100021103
  3. Kaasalainen T, Ekholm M, Siiskonen T, Kortesniemi M. Dental cone beam CT: An updated review. Phys Med. 2021;88:193-217. doi: 10.1016/j.ejmp.2021.07.007.
  4. Karapetyan T.A., Perunov A.Y. CAD/CAM technology – orthopedic dentistry of the future. Bulletin of medical Internet conferences. 2018; 8(2): 63-64. (In Russ.).
  5. Dolgalev A., Nechaeva N., Ivancheva E.N., Nagoryansky V. The use of cone beam computed tomography in endodontics (Part I). Analysis of root canal topography. Endodontics Today. 2017;15(1):68-71. (In Russ.)
  6. Kesharani P.R., Aggarwal S.D., Patel N.K., et al. The effect of computer aided navigation techniques on the precision of endodontic access cavities: A systematic review and meta-analysis. Endodontics Today. 2024;22(3):244-253. doi: 10.36377/ET-0041
  7. Zubizarreta-Macho Á, Castillo-Amature C, Montiel-Company JM, Mena-Álvarez J. Efficacy of Computer-Aided Static Navigation Technique on the Accuracy of Endodontic Microsurgery. A Systematic Review and Meta-Analysis. J Clin Med. 2021;10(2):313. doi: 10.3390/jcm10020313.
  8. Melnikov Yu. A., Zholudev S.E. advantages and disadvantages of navigation surgery in dental implantation. Problems of dentistry. 2022; (1): 37-45. doi: 10.18481/2077-7566-22-18-1-37-45
  9. Younis H, Lv C, Xu B, et al. Accuracy of dynamic navigation compared to static surgical guides and the freehand approach in implant placement: a prospective clinical study. Head Face Med. 2024;20(1):30. doi: 10.1186/s13005-024-00433-1.
  10. Anand M, Panwar S. Role of Navigation in Oral and Maxillofacial Surgery: A Surgeon's Perspectives. Clin Cosmet Investig Dent. 2021;13:127-139. doi: 10.2147/CCIDE.S299249.
  11. Chong BS, Dhesi M, Makdissi J. Computer-aided dynamic navigation: a novel method for guided endodontics. Quintessence Int. 2019;50(3):196-202. doi: 10.3290/j.qi.a41921.
  12. Li K, Li T, Guo G, et al. Dynamic navigation vs. static navigation in implant placement: A meta-analysis. J Dent. 2024;151:105395. doi: 10.1016/j.jdent.2024.105395.
  13. Zhang S, Cai Q, Chen W, et al. Accuracy of implant placement via dynamic navigation and autonomous robotic computer-assisted implant surgery methods: A retrospective study. Clin Oral Implants Res. 2024;35(2):220-229. doi: 10.1111/clr.14216.
  14. Pulatova, B., Mukaddaskhonova M. The use of computer navigation in the planning of dental implantation. Current problems of dentistry and maxillofacial surgery. 2022; 4(1): 39–41. (In Russ.).
  15. Zhang Y, Wang K, Jiang J, Tan Q. Research on intraoperative organ motion tracking method based on fusion of inertial and electromagnetic navigation. IEEE Access. 2021; 9:49069–49081.
  16. García Franco C, Riad Deglow E, Montero J, et al. Endodontic access with different computer navigation systems in calcified root canals. J Am Dent Assoc. 2024;155(12):1043-1052. doi: 10.1016/j.adaj.2024.09.011.
  17. Watzinger F, Birkfellner W, Wanschitz F, et al. Positioning of dental implants using computer-aided navigation and an optical tracking system: case report and presentation of a new method. J Craniomaxillofac Surg. 1999;27(2):77-81. doi: 10.1016/s1010-5182(99)80017-1.
  18. Yablokov A.E., Ivaschenko A.V., Fediaev I.M., et al. Features of dental implants’ positioning. Medical alphabet. 2019;2(11):33-34. (In Russ.) doi: 10.33667/2078-5631-2019-2-11(386)-33-34
  19. Gargallo-Albiol J, Barootchi S, Salomó-Coll O, Wang HL. Advantages and disadvantages of implant navigation surgery. A systematic review. Ann Anat. 2019;225:1-10. doi: 10.1016/j.aanat.2019.04.005.
  20. Wang F, Wang Q, Zhang J. Role of Dynamic Navigation Systems in Enhancing the Accuracy of Implant Placement: A Systematic Review and Meta-Analysis of Clinical Studies. J Oral Maxillofac Surg. 2021;79(10):2061-2070. doi: 10.1016/j.joms.2021.06.005.
  21. Afrashtehfar KI, Jurado CA, Moshaverinia A. Dynamic navigation may be used for most implant surgery scenarios due to its satisfactory accuracy. J Evid Based Dent Pract. 2022;22(4):101797. doi: 10.1016/j.jebdp.2022.101797.
  22. Block MS, Emery RW, Cullum DR, Sheikh A. Implant Placement Is More Accurate Using Dynamic Navigation. J Oral Maxillofac Surg. 2017;75(7):1377-1386. doi: 10.1016/j.joms.2017.02.026
  23. Panchal N, Mahmood L, Retana A, Emery R 3rd. Dynamic Navigation for Dental Implant Surgery. Oral Maxillofac Surg Clin North Am. 2019;31(4):539-547. doi: 10.1016/j.coms.2019.08.001. PMID: 31563194.
  24. Bhalerao A, Marimuthu M, Wahab A, Ayoub A. Dynamic navigation for zygomatic implant placement: A randomized clinical study comparing the flapless versus the conventional approach. J Dent. 2023;130:104436. doi: 10.1016/j.jdent.2023.104436.
  25. Stefanelli LV, Graziani U, Pranno N, et al. Accuracy of Dynamic Navigation Surgery in the Placement of Pterygoid Implants. Int J Periodontics Restorative Dent. 2020;40(6):825-834. doi: 10.11607/prd.4605.
  26. Pellegrino G, Bellini P, Cavallini PF, et al. Dynamic Navigation in Dental Implantology: The Influence of Surgical Experience on Implant Placement Accuracy and Operating Time. An in Vitro Study. Int J Environ Res Public Health. 2020;17(6):2153. doi: 10.3390/ijerph17062153.
  27. Mai HN, Dam VV, Lee DH. Accuracy of Augmented Reality-Assisted Navigation in Dental Implant Surgery: Systematic Review and Meta-analysis. J Med Internet Res. 2023;25:e42040. doi: 10.2196/42040.
  28. Liu L, Wang X, Guan M, et al. A mixed reality-based navigation method for dental implant navigation method: A pilot study. Comput Biol Med. 2023;154:106568. doi: 10.1016/j.compbiomed.2023.106568.
  29. Zhan Y, Wang M, Cheng X, et al. Evaluation of a dynamic navigation system for training students in dental implant placement. J Dent Educ. 2021;85(2):120-127. doi: 10.1002/jdd.12399.
  30. Lopes A, de Araújo Nobre M, Santos D. The Workflow of a New Dynamic Navigation System for the Insertion of Dental Implants in the Rehabilitation of Edentulous Jaws: Report of Two Cases. J Clin Med. 2020;9(2):421. doi: 10.3390/jcm9020421.
  31. Feng Y, Yao Y, Yang X. Effect of a dynamic navigation device on the accuracy of implant placement in the completely edentulous mandible: An in vitro study. J Prosthet Dent. 2023;130(5):731-737. doi: 10.1016/j.prosdent.2021.12.012.
  32. Wang J, Ge Y, Mühlemann S, Pan S, Jung RE. The accuracy of dynamic computer assisted implant surgery in fully edentulous jaws: A retrospective case series. Clin Oral Implants Res. 2023;34(11):1278-1288. doi: 10.1111/clr.14168.
  33. Yu X, Tao B, Wang F, Wu Y. Accuracy assessment of dynamic navigation during implant placement: A systematic review and meta-analysis of clinical studies in the last 10 years. J Dent. 2023;135:104567. doi: 10.1016/j.jdent.2023.104567.
  34. Albadani MM, Elayah SA, Al-Wesabi MA, et al. A graftless maxillary sinus lifting approach with simultaneous dental implant placement: a prospective clinical study. BMC Oral Health. 2024;24(1):227. doi: 10.1186/s12903-024-03949-9.
  35. Amam MA, Abdo A, Alnour A, et al. External sinus lifting using calcium sulphate as a bone grafting in an adult male patient: Case report. Ann Med Surg (Lond). 2022;84:104951. doi: 10.1016/j.amsu.2022.104951.
  36. Deng Y, Tong C, Gao K, et al. Modified internal sinus elevation for patients with low residual bone height: A retrospective clinical study. Clin Implant Dent Relat Res. 2023;25(3):458-472. doi: 10.1111/cid.13204.
  37. Skakunov Ya.I., Drobyshev A.Yu., Redko N.A., Le T.H. The use of an innovative technique for perforations of the mucous membrane of the maxillary sinus during the sinus lift operation. Medical alphabet. 2024;(11):42-47. (In Russ.) doi: 10.33667/2078-5631-2024-11-42-47
  38. Bishbish O, Kan J, Kim YJ. Guided Lateral Window Osteotomy Using Dynamic Navigation for Maxillary Sinus Augmentation: A Novel Technique. J Oral Implantol. 2023;49(3):316-321. doi: 10.1563/aaid-joi-D-22-00053.
  39. Dotia A, Selvaganesh S, R P A, Nesappan T. Dynamic Navigation Protocol for Direct Sinus Lift and Simultaneous Implant Placement: A Case Report. Cureus. 2024;16(2):e53621. doi: 10.7759/cureus.53621.
  40. Jain S, Solanki A. A dynamic surgical navigational approach for immediate implantation and transcrestal sinus augmentation. J Indian Soc Periodontol. 2021;25(5):451-456. doi: 10.4103/jisp.jisp_581_20.
  41. Razumova S.N., Brago A.S., Barakat H., et al. Assessment of the results of endodontic treatment of teeth. Endodontics Today. 2020;18(1):27-30. (In Russ.). doi: 10.36377/1683-2981-2020-18-1-27-30.
  42. Gambarini G, Galli M, Morese A, et al. Precision of Dynamic Navigation to Perform Endodontic Ultraconservative Access Cavities: A Preliminary In Vitro Analysis. J Endod. 2020;46(9):1286-1290. doi: 10.1016/j.joen.2020.05.022
  43. Dianat O, Gupta S, Price JB, Mostoufi B. Guided Endodontic Access in a Maxillary Molar Using a Dynamic Navigation System. J Endod. 2021;47(4):658-662. doi: 10.1016/j.joen.2020.09.019.
  44. Dianat O, Nosrat A, Tordik PA, et al. Accuracy and Efficiency of a Dynamic Navigation System for Locating Calcified Canals. J Endod. 2020;46(11):1719-1725. doi: 10.1016/j.joen.2020.07.014.
  45. Villa-Machado PA, Restrepo-Restrepo FA, Sousa-Dias H, Tobón-Arroyave SI. Application of computer-assisted dynamic navigation in complex root canal treatments: Report of two cases of calcified canals. Aust Endod J. 2022;48(1):187-196. doi: 10.1111/aej.12614.
  46. Yang X, Zhang Y, Chen X, et al. Limitations and Management of Dynamic Navigation System for Locating Calcified Canals Failure. J Endod. 2024;50(1):96-105. doi: 10.1016/j.joen.2023.10.010.
  47. E.V. Ivanova, E.G. Sabantseva, E.V. Petushkova. Endodontic retreatment in the appealability structure of the compulsory medical insurance on the example of the state dental practice. 2021; 19(3):148-152. doi: 10.36377/1683-2981-2021-19-3-148-152.
  48. Olivieri JG, Encinas M, Nathani T, Miró Q, Duran-Sindreu F. Outcome of root canal retreatment filled with gutta-percha techniques: A systematic review and meta-analysis. J Dent. 2024;142:104809. doi: 10.1016/j.jdent.2023.104809.
  49. Janabi A, Tordik PA, Griffin IL, et al. Accuracy and Efficiency of 3-dimensional Dynamic Navigation System for Removal of Fiber Post from Root Canal-Treated Teeth. J Endod. 2021;47(9):1453-1460. doi: 10.1016/j.joen.2021.07.002.
  50. Bardales-Alcocer J, Ramírez-Salomón M, Vega-Lizama E, et al. Endodontic Retreatment Using Dynamic Navigation: A Case Report. J Endod. 2021;47(6):1007-1013. doi: 10.1016/j.joen.2021.03.005.
  51. Martinho FC, Qadir SJ, Griffin IL, et al. Augmented Reality Head-Mounted Device and Dynamic Navigation System for Postremoval in Maxillary Molars. J Endod. 2024;50(6):844-851. doi: 10.1016/j.joen.2024.02.004.
  52. Karim MH, Faraj BM. Comparative Evaluation of a Dynamic Navigation System versus a Three-dimensional Microscope in Retrieving Separated Endodontic Files: An In Vitro Study. J Endod. 2023;49(9):1191-1198. doi: 10.1016/j.joen.2023.06.014.
  53. Kim D, Ku H, Nam T, et al. Influence of Size and Volume of Periapical Lesions on the Outcome of Endodontic Microsurgery: 3-Dimensional Analysis Using Cone-beam Computed Tomography. J Endod. 2016;42(8):1196-201. doi: 10.1016/j.joen.2016.05.006
  54. Aldahmash SA, Price JB, Mostoufi B, et al.. Real-time 3-dimensional Dynamic Navigation System in Endodontic Microsurgery: A Cadaver Study. J Endod. 2022;48(7):922-929. doi: 10.1016/j.joen.2022.04.012.
  55. Gambarini G, Galli M, Stefanelli LV, et al. Endodontic Microsurgery Using Dynamic Navigation System: A Case Report. J Endod. 2019;45(11):1397-1402.e6. doi: 10.1016/j.joen.2019.07.010.
  56. Fu W, Chen C, Bian Z, Meng L. Endodontic Microsurgery of Posterior Teeth with the Assistance of Dynamic Navigation Technology: A Report of Three Cases. J Endod. 2022;48(7):943-950. doi: 10.1016/j.joen.2022.03.010.
  57. Lu YJ, Chiu LH, Tsai LY, Fang CY. Dynamic navigation optimizes endodontic microsurgery in an anatomically challenging area. J Dent Sci. 2022;17(1):580-582. doi: 10.1016/j.jds.2021.07.002.
  58. Chen C, Zhang R, Zhang W, et al. Analysis of the accuracy of a dynamic navigation system in endodontic microsurgery: A prospective case series study. J Dent. 2023;134:104534. doi: 10.1016/j.jdent.2023.104534
  59. Wang Z, Guo X, Chen C, et al. Effect of Field of View and Voxel Size on CBCT-Based Accuracy of Dynamic Navigation in Endodontic Microsurgery: An In Vitro Study. J Endod. 2023;49(8):1012-1019. doi: 10.1016/j.joen.2023.05.018
  60. Martinho FC, Griffin IL, Tordik PA. Piezoelectric Device and Dynamic Navigation System Integration for Bone Window-Guided Surgery. J Endod. 2023;49(12):1698-1705. doi: 10.1016/j.joen.2023.09.013.
  61. Guo Y, Xu DD, Lv K, et al. Use of Computer-Assisted Navigation in the Retrieval of Accidentally Displaced Third Molars. J Oral Maxillofac Surg. 2016;74(5):889-94. doi: 10.1016/j.joms.2015.12.015.
  62. Pellegrino G, Lizio G, Ferri A, Marchetti C. Flapless and bone-preserving extraction of partially impacted mandibular third molars with dynamic navigation technology. A report of three cases. Int J Comput Dent. 2021;24(3):253-262.
  63. Emery RW, Korj O, Agarwal R. A Review of In-Office Dynamic Image Navigation for Extraction of Complex Mandibular Third Molars. J Oral Maxillofac Surg. 2017;75(8):1591-1600. doi: 10.1016/j.joms.2017.03.031
  64. Lutz JC, Hostettler A, Agnus V, et al. A New Software Suite in Orthognathic Surgery : Patient Specific Modeling, Simulation and Navigation. Surg Innov. 2019;26(1):5-20. doi: 10.1177/1553350618803233.
  65. Berger M, Nova I, Kallus S, et al. Electromagnetic navigated condylar positioning after high oblique sagittal split osteotomy of the mandible: a guided method to attain pristine temporomandibular joint conditions. Oral Surg Oral Med Oral Pathol Oral Radiol. 2018;125(5):407-414.e1. doi: 10.1016/j.oooo.2017.12.007.
  66. Brouwer de Koning SG, Geldof F, van Veen RLP, et al. Electromagnetic surgical navigation in patients undergoing mandibular surgery. Sci Rep. 2021;11(1):4657. doi: 10.1038/s41598-021-84129-5.
  67. Chowdhury SKR, Mishra A, Saxena V, et al. Application of Navigation Surgery in Temporomandibular Joint Ankylosis Case and Review of Literature. J Maxillofac Oral Surg. 2020;19(1):44-46. doi: 10.1007/s12663-019-01231-y.
  68. Sukegawa S, Kanno T, Furuki Y. Application of computer-assisted navigation systems in oral and maxillofacial surgery. Jpn Dent Sci Rev. 2018;54(3):139-149. doi: 10.1016/j.jdsr.2018.03.005.
  69. Ji Y, Jiang H, Wan L, Yuan H. Effect of Navigation System on Removal of Foreign Bodies in Head and Neck Surgery. J Craniofac Surg. 2018;29(7):e723-e726. doi: 10.1097/SCS.0000000000004986
  70. Zhang C, Wu J, Yang C, et al. New Solutions to Improve the Accuracy of the Navigation-Guided Foreign Body Removal in Craniomaxillofacial Deep Space. J Craniofac Surg. 2020;31(6):e577-e580. doi: 10.1097/SCS.0000000000006584
  71. Tokgöz E, Carro MA. Cosmetic and reconstructive facial plastic surgery related simulation and optimization efforts. Springer. 2023: 231–256
  72. Soh HY, Hu LH, Yu Y, et al. Navigation-assisted maxillofacial reconstruction: accuracy and predictability. Int J Oral Maxillofac Surg. 2022;51(7):874-882. doi: 10.1016/j.ijom.2021.11.008.
  73. Zhang WB, Soh HY, Yu Y, et al. Improved procedure for Brown's Class III maxillary reconstruction with composite deep circumflex iliac artery flap using computer-assisted technique. Comput Assist Surg (Abingdon). 2021;26(1):9-14. doi: 10.1080/24699322.2021.1876168
  74. Sozzi D, Filippi A, Canzi G, et al. Surgical Navigation in Mandibular Reconstruction: Accuracy Evaluation of an Innovative Protocol. J Clin Med. 2022;11(7):2060. doi: 10.3390/jcm11072060.
  75. Han C, Dilxat D, Zhang X, et al. Does Intraoperative Navigation Improve the Anatomical Reduction of Intracapsular Condylar Fractures? J Oral Maxillofac Surg. 2018;76(12):2583-2591. doi: 10.1016/j.joms.2018.07.030.
  76. Khatib B, Cuddy K, Cheng A, et al. Functional Anatomic Computer Engineered Surgery Protocol for the Management of Self-Inflicted Gunshot Wounds to the Maxillofacial Skeleton. J Oral Maxillofac Surg. 2018;76(3):580-594. doi: 10.1016/j.joms.2017.10.017.
  77. He Y, Huang T, Zhang Y, et al. Application of a computer-assisted surgical navigation system in temporomandibular joint ankylosis surgery: a retrospective study. Int J Oral Maxillofac Surg. 2017;46(2):189-197. doi: 10.1016/j.ijom.2016.10.006.
  78. Riad Deglow E, Toledano Gil S, Zubizarreta-Macho Á, et al. Influence of the Computer-Aided Static Navigation Technique and Mixed Reality Technology on the Accuracy of the Orthodontic Micro-Screws Placement. An In Vitro Study. J Pers Med. 2021;11(10):964. doi: 10.3390/jpm11100964.
  79. Yuan F, Wang Y, Zhang Y, et al. An automatic tooth preparation technique: A preliminary study. Sci Rep. 2016;6:25281. doi: 10.1038/srep25281.
  80. Jain SD, Carrico CK, Bermanis I, Rehil S. Intraosseous Anesthesia Using Dynamic Navigation Technology. J Endod. 2020;46(12):1894-1900. doi: 10.1016/j.joen.2020.09.001.
  81. Wang Z, Chen C, Qin L, et al. Accuracy and Efficiency of Endodontic Microsurgery Assisted by Dynamic Navigation Based on Two Different Registration Methods: An In Vitro Study. J Endod. 2023 Sep;49(9):1199-1206. doi: 10.1016/j.joen.2023.06.012.
  82. Wang X, Shujaat S, Meeus J, et al. Performance of novice versus experienced surgeons for dental implant placement with freehand, static guided and dynamic navigation approaches. Sci Rep. 2023;13(1):2598. doi: 10.1038/s41598-023-29633-6.
  83. Block MS, Emery RW. Static or Dynamic Navigation for Implant Placement-Choosing the Method of Guidance. J Oral Maxillofac Surg. 2016;74(2):269-77. doi: 10.1016/j.joms.2015.09.022.
  84. Block MS. Treatment Planning and Perioperative Management of the Dental Implant Patient. Perioperative Assessment of the Maxillofacial Surgery Patient: Problem-based Patient Management. 2018; pp:433–454
  85. Pellegrino G, Mangano C, Mangano R, et al. Augmented reality for dental implantology: a pilot clinical report of two cases. BMC Oral Health. 2019;19(1):158. doi: 10.1186/s12903-019-0853-y.
  86. Lam K, Bigcas JL, Luong A, et al. Flexible microsensor technology for real-time navigation tracking in balloon sinus ostial dilation. Allergy Rhinol (Providence). 2017;8(1):20-24. doi: 10.2500/ar.2017.8.0193.
  87. HPS2-THRIVE Collaborative Group; Landray MJ, Haynes R, et al. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014;371(3):203-12. doi: 10.1056/NEJMoa1300955.
  88. Esposito A, Palmisano A, Antunes S, et al. Cardiac CT With Delayed Enhancement in the Characterization of Ventricular Tachycardia Structural Substrate: Relationship Between CT-Segmented Scar and Electro-Anatomic Mapping. JACC Cardiovasc Imaging. 2016;9(7):822-832. doi: 10.1016/j.jcmg.2015.10.024.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86295 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80635 от 15.03.2021 г
.