Exploring New Horizons in Dentistry: Dynamic Navigation in Implantology, Endodontics, and Maxillofacial Surgery

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Dynamic navigation (DN) allows for real-time monitoring of the position of instruments using a computer-aided system. DN uses video monitoring systems to display the position of instruments on a computer screen, enabling more precise and well-controlled procedures. This technology is especially valuable in complex, demanding interventions such as endodontic microsurgery, sinus floor augmentation, and orthognathic surgery.

This review aims to analyze published data on the use of DN in dentistry, with a special focus on implantology, endodontics, and maxillofacial surgery, as well as to highlight key benefits and drawbacks of this technique and provide recommendations for its integration in routine practice. The search in PubMed/MEDLINE, Google Scholar, and eLIBRARY.RU yielded 6,755 publications. Following screening, 88 publications were included in the review.

Using DN, clinicians can assess the patient’s anatomy prior to surgery, plan treatment with high accuracy, and control the procedure in real time. It is particularly important in complex surgeries such as dental implantation, where precise implant placement determines the success of treatment. Moreover, digital technologies reduce the risk of complications and the duration of post-surgical rehabilitation. Therefore, the use of DN in dentistry is a medical breakthrough. This technology improves the quality of medical care while making treatment safer and more comfortable for patients.

Further evolution and integration of digital technologies in dentistry will provide novel diagnosis and treatment options while also improving clinicians’ professional skills.

Full Text

Restricted Access

About the authors

Vladimir I. Angilov

Rostov State Medical University

Author for correspondence.
Email: vladimirangilov58@gmail.com
ORCID iD: 0009-0000-7285-4177
Russian Federation, Rostov-on-Don

Naida J. Osmanova

Okodent LLC

Email: naidaosmanova18@icloud.com
ORCID iD: 0009-0006-8653-7424
Russian Federation, Saint Petersburg

Sabina R. Vakhitova

Bashkir State Medical University

Email: sabinavakhitova@mail.ru
ORCID iD: 0009-0002-6364-9846
Russian Federation, Ufa

Maria S. Ugolkova

First Sechenov Moscow State Medical University

Email: ugolkovamaria60@gmail.com
ORCID iD: 0009-0008-6182-7411
Russian Federation, Moscow

Lev E. Chnavayan

Mechnikov North-Western State Medical University

Email: chnavayan2002@gmail.com
ORCID iD: 0009-0009-8094-5162
Russian Federation, Saint Petersburg

Emma P. Arutyunyan

Rostov State Medical University

Email: emliebe@mail.ru
ORCID iD: 0009-0004-1761-4938
Russian Federation, Rostov-on-Don

Darina V. Gukezheva

Pirogov Russian National Research Medical University

Email: lsanieva@inbox.ru
ORCID iD: 0009-0003-9080-5979
Russian Federation, Moscow

Anna S. Pesnya

Pirogov Russian National Research Medical University

Email: nnnklsk@mail.ru
ORCID iD: 0009-0003-9922-6471
Russian Federation, Moscow

Tamara A. Rybakova

Kuban State Medical University

Email: tdosycheva@bk.ru
ORCID iD: 0009-0006-6343-0237
Russian Federation, Krasnodar

Evelina D. Lupenko

Kuban State Medical University

Email: lupenko.evelina@yandex.ru
ORCID iD: 0009-0009-2749-3099
Russian Federation, Krasnodar

Liana I. Latypova

Bashkir State Medical University

Email: whlcg@bk.ru
ORCID iD: 0009-0001-1906-2223
Russian Federation, Ufa

Sofia K. Efimova

Rostov State Medical University

Email: sofya.efimova.2001@bk.ru
ORCID iD: 0009-0008-5635-084X
Russian Federation, Rostov-on-Don

Sofiko D. Zakaraya

Rostov State Medical University

Email: szakarayaaaa@mail.ru
ORCID iD: 0009-0001-0522-8966
Russian Federation, Rostov-on-Don

References

  1. Varfolomeev DI. A new method of distal blocking of intramedullary implants. Science and Innovations in Medicine. 2022;7(4):275–280. doi: 10.35693/2500-1388-2022-7-4-275-280 EDN: BUJRKQ
  2. Blinova AV, Rumyantsev VA. Nanomaterials in the modern dentistry (review). Stomatology. 2021;100(2):103–109. doi: 10.17116/stomat2021100021103 EDN: RVCWBU
  3. Kaasalainen T, Ekholm M, Siiskonen T, Kortesniemi M. Dental cone beam CT: An updated review. Phys Med. 2021;88:193–217. doi: 10.1016/j.ejmp.2021.07.007 EDN: QFUURQ
  4. Karapetyan TA, Perunov AY. CAD/CAM technology — orthopedic dentistry of the future. Bulletin of Medical Internet Conferences. 2018;8(2):63–64. (In Russ.) EDN: YUFJZP
  5. Dolgalev AA, Nechaeva NK, Ivancheva EN, Nagoryansky VYu. The use of cone beam computed tomography in endodontics (Part I). Analysis of root canal topography. Endodontics Today. 2017;15(1):68–71. (In Russ.) EDN: YQKXPL
  6. Kesharani PR, Aggarwal SD, Patel NK, et al. The effect of computer aided navigation techniques on the precision of endodontic access cavities: A systematic review and meta-analysis. Endodontics Today. 2024;22(3):244–253. doi: 10.36377/ET-0041 EDN: XMKNYJ
  7. Zubizarreta-Macho Á, Castillo-Amature C, Montiel-Company JM, Mena-Álvarez J. Efficacy of computer-aided static navigation technique on the accuracy of endodontic microsurgery. A systematic review and meta-analysis. J Clin Med. 2021;10(2):313. doi: 10.3390/jcm10020313 EDN: FEJDRQ
  8. Melnikov Yu, Zholudev S. Advantages and disadvantages of navigation surgery in dental implantation. Actual Problems in Dentistry. 2022;18(1):37–45. doi: 10.18481/2077-7566-22-18-1-37-45 EDN: EMXIAU
  9. Younis H, Lv C, Xu B, et al. Accuracy of dynamic navigation compared to static surgical guides and the freehand approach in implant placement: a prospective clinical study. Head Face Med. 2024;20(1):30. doi: 10.1186/s13005-024-00433-1 EDN: TXCQIM
  10. Anand M, Panwar S. Role of navigation in oral and maxillofacial surgery: a surgeon’s perspectives. Clin Cosmet Investig Dent. 2021;13:127–139. doi: 10.2147/CCIDE.S299249 EDN: GCTKJO
  11. Chong BS, Dhesi M, Makdissi J. Computer-aided dynamic navigation: a novel method for guided endodontics. Quintessence Int. 2019;50(3):196–202. doi: 10.3290/j.qi.a41921
  12. Li K, Li T, Guo G, et al. Dynamic navigation vs. static navigation in implant placement: A meta-analysis. J Dent. 2024;151:105395. doi: 10.1016/j.jdent.2024.105395 EDN: WMLLDN
  13. Zhang S, Cai Q, Chen W, et al. Accuracy of implant placement via dynamic navigation and autonomous robotic computer-assisted implant surgery methods: A retrospective study. Clin Oral Implants Res. 2024;35(2):220–229. doi: 10.1111/clr.14216 EDN: KRZDAL
  14. Pulatova B, Mukaddaskhonova M. The use of computer navigation in the planning of dental implantation. Current Problems of Dentistry and Maxillofacial Surgery. 2022;4(1):39–41. (In Russ.). URL: https://inlibrary.uz/index.php/problems-dentistry/article/view/15724
  15. Zhang Y, Wang K, Jiang JG, Tan Q. Research on intraoperative organ motion tracking method based on fusion of inertial and electromagnetic navigation. IEEE Access. 2021;9:49069–49081. doi: 10.1109/ACCESS.2021.3068741 EDN: CXLVUX
  16. García Franco C, Riad Deglow E, Montero J, et al. Endodontic access with different computer navigation systems in calcified root canals. J Am Dent Assoc. 2024;155(12):1043–1052. doi: 10.1016/j.adaj.2024.09.011 EDN: HJIAPH
  17. Watzinger F, Birkfellner W, Wanschitz F, et al. Positioning of dental implants using computer-aided navigation and an optical tracking system: case report and presentation of a new method. J Craniomaxillofac Surg. 1999;27(2):77–81. doi: 10.1016/s1010-5182(99)80017-1
  18. Yablokov AE, Ivaschenko AV, Fediaev IM, et al. Features of dental implants’ positioning. Medical Alphabet. 2019;2(11):33–34. doi: 10.33667/2078-5631-2019-2-11(386)-33-34 EDN: VWGKYG
  19. Gargallo-Albiol J, Barootchi S, Salomó-Coll O, Wang HL. Advantages and disadvantages of implant navigation surgery. A systematic review. Ann Anat. 2019;225:1–10. doi: 10.1016/j.aanat.2019.04.005 EDN: PBEXEU
  20. Wang F, Wang Q, Zhang J. Role of dynamic navigation systems in enhancing the accuracy of implant placement: a systematic review and meta-analysis of clinical studies. J Oral Maxillofac Surg. 2021;79(10):2061–2070. doi: 10.1016/j.joms.2021.06.005 EDN: CNKBYT
  21. Afrashtehfar KI, Jurado CA, Moshaverinia A. Dynamic navigation may be used for most implant surgery scenarios due to its satisfactory accuracy. J Evid Based Dent Pract. 2022;22(4):101797. doi: 10.1016/j.jebdp.2022.101797 EDN: YPVCNX
  22. Block MS, Emery RW, Cullum DR, Sheikh A. Implant placement is more accurate using dynamic navigation. J Oral Maxillofac Surg. 2017;75(7):1377–1386. doi: 10.1016/j.joms.2017.02.026
  23. Panchal N, Mahmood L, Retana A, Emery R 3rd. Dynamic navigation for dental implant surgery. Oral Maxillofac Surg Clin North Am. 2019;31(4):539–547. doi: 10.1016/j.coms.2019.08.001
  24. Bhalerao A, Marimuthu M, Wahab A, Ayoub A. Dynamic navigation for zygomatic implant placement: A randomized clinical study comparing the flapless versus the conventional approach. J Dent. 2023;130:104436. doi: 10.1016/j.jdent.2023.104436 EDN: QZJUDP
  25. Stefanelli LV, Graziani U, Pranno N, et al. Accuracy of dynamic navigation surgery in the placement of pterygoid implants. Int J Periodontics Restorative Dent. 2020;40(6):825–834. doi: 10.11607/prd.4605 EDN: QEOPCQ
  26. Pellegrino G, Bellini P, Cavallini PF, et al. Dynamic navigation in dental implantology: the influence of surgical experience on implant placement accuracy and operating time. An in vitro study. Int J Environ Res Public Health. 2020;17(6):2153. doi: 10.3390/ijerph17062153 EDN: NXREPF
  27. Mai HN, Dam VV, Lee DH. Accuracy of augmented reality-assisted navigation in dental implant surgery: systematic review and meta-analysis. J Med Internet Res. 2023;25:e42040. doi: 10.2196/42040 EDN: IBORUX
  28. Liu L, Wang X, Guan M, et al. A mixed reality-based navigation method for dental implant navigation method: A pilot study. Comput Biol Med. 2023;154:106568. doi: 10.1016/j.compbiomed.2023.106568 EDN: ASTXNW
  29. Zhan Y, Wang M, Cheng X, et al. Evaluation of a dynamic navigation system for training students in dental implant placement. J Dent Educ. 2021;85(2):120–127. doi: 10.1002/jdd.12399 EDN: CNAEZV
  30. Lopes A, de Araújo Nobre M, Santos D. The workflow of a new dynamic navigation system for the insertion of dental implants in the rehabilitation of edentulous jaws: report of two cases. J Clin Med. 2020;9(2):421. doi: 10.3390/jcm9020421 EDN: JWMRQP
  31. Feng Y, Yao Y, Yang X. Effect of a dynamic navigation device on the accuracy of implant placement in the completely edentulous mandible: An in vitro study. J Prosthet Dent. 2023;130(5):731–737. doi: 10.1016/j.prosdent.2021.12.012 EDN: QTJAGU
  32. Wang J, Ge Y, Mühlemann S, et al. The accuracy of dynamic computer assisted implant surgery in fully edentulous jaws: A retrospective case series. Clin Oral Implants Res. 2023;34(11):1278–1288. doi: 10.1111/clr.14168 EDN: RHRWGO
  33. Yu X, Tao B, Wang F, Wu Y. Accuracy assessment of dynamic navigation during implant placement: A systematic review and meta-analysis of clinical studies in the last 10 years. J Dent. 2023;135:104567. doi: 10.1016/j.jdent.2023.104567 EDN: MEFXOX
  34. Albadani MM, Elayah SA, Al-Wesabi MA, et al. A graft less maxillary sinus lifting approach with simultaneous dental implant placement: a prospective clinical study. BMC Oral Health. 2024;24(1):227. doi: 10.1186/s12903-024-03949-9 EDN: KMRXLR
  35. Amam MA, Abdo A, Alnour A, et al. External sinus lifting using calcium sulphate as a bone grafting in an adult male patient: Case report. Ann Med Surg (Lond). 2022;84:104951. doi: 10.1016/j.amsu.2022.104951 EDN: OJDZQB
  36. Deng Y, Tong C, Gao K, et al. Modified internal sinus elevation for patients with low residual bone height: A retrospective clinical study. Clin Implant Dent Relat Res. 2023;25(3):458–472. doi: 10.1111/cid.13204 EDN: VFCPAD
  37. Skakunov YaI, Drobyshev AYu, Redko NA, Le TH. The use of an innovative technique for perforations of the mucous membrane of the maxillary sinus during the sinus lift operation. Medical Alphabet. 2024;(11):42–47. doi: 10.33667/2078-5631-2024-11-42-47 EDN: LHCNLK
  38. Bishbish O, Kan J, Kim YJ. Guided lateral window osteotomy using dynamic navigation for maxillary sinus augmentation: a novel technique. J Oral Implantol. 2023;49(3):316–321. doi: 10.1563/aaid-joi-D-22-00053 EDN: CAFEPV
  39. Dotia A, Selvaganesh S, R P A, Nesappan T. Dynamic navigation protocol for direct sinus lift and simultaneous implant placement: a case report. Cureus. 2024;16(2):e53621. doi: 10.7759/cureus.53621 EDN: PGIOTJ
  40. Jain S, Solanki A. A dynamic surgical navigational approach for immediate implantation and transcrestal sinus augmentation. J Indian Soc Periodontol. 2021;25(5):451–456. doi: 10.4103/jisp.jisp_581_20 EDN: VFLYBG
  41. Razumova SN, Brago AS, Barakat H, et al. Assessment of the results of endodontic treatment of teeth. Endodontics Today. 2020;18(1):27–30. doi: 10.36377/1683-2981-2020-18-1-27-30 EDN: VRLNJU
  42. Gambarini G, Galli M, Morese A, et al. Precision of dynamic navigation to perform endodontic ultraconservative access cavities: a preliminary in vitro analysis. J Endod. 2020;46(9):1286–1290. doi: 10.1016/j.joen.2020.05.022 EDN: UHPWSQ
  43. Dianat O, Gupta S, Price JB, Mostoufi B. Guided endodontic access in a maxillary molar using a dynamic navigation system. J Endod. 2021;47(4):658–662. doi: 10.1016/j.joen.2020.09.019 EDN: TUYRYV
  44. Dianat O, Nosrat A, Tordik PA, et al. Accuracy and efficiency of a dynamic navigation system for locating calcified canals. J Endod. 2020;46(11):1719–1725. doi: 10.1016/j.joen.2020.07.014 EDN: RDPESE
  45. Villa-Machado PA, Restrepo-Restrepo FA, Sousa-Dias H, Tobón-Arroyave SI. Application of computer-assisted dynamic navigation in complex root canal treatments: Report of two cases of calcified canals. Aust Endod J. 2022;48(1):187–196. doi: 10.1111/aej.12614 EDN: MPTKDW
  46. Yang X, Zhang Y, Chen X, et al. Limitations and management of dynamic navigation system for locating calcified canals failure. J Endod. 2024;50(1):96–105. doi: 10.1016/j.joen.2023.10.010 EDN: ASKYPL
  47. Ivanova EV, Sabantseva EG, Petushkova EV. Endodontic retreatment in the appealability structure of the compulsory medical insurance on the example of the state dental practice. Endodontics Today. 2021;19(3):148–152. doi: 10.36377/1683-2981-2021-19-3-148-152 EDN: BDDTQG
  48. Olivieri JG, Encinas M, Nathani T, et al. Outcome of root canal retreatment filled with gutta-percha techniques: A systematic review and meta-analysis. J Dent. 2024;142:104809. doi: 10.1016/j.jdent.2023.104809 EDN: IPERAQ
  49. Janabi A, Tordik PA, Griffin IL, et al. Accuracy and efficiency of 3-dimensional dynamic navigation system for removal of fiber post from root canal-treated teeth. J Endod. 2021;47(9):1453–1460. doi: 10.1016/j.joen.2021.07.002 EDN: MKOVEH
  50. Bardales-Alcocer J, Ramírez-Salomón M, Vega-Lizama E, et al. Endodontic retreatment using dynamic navigation: a case report. J Endod. 2021;47(6):1007–1013. doi: 10.1016/j.joen.2021.03.005 EDN: CNMHWJ
  51. Martinho FC, Qadir SJ, Griffin IL, et al. Augmented reality head-mounted device and dynamic navigation system for postremoval in maxillary molars. J Endod. 2024;50(6):844–851. doi: 10.1016/j.joen.2024.02.004 EDN: VMINZY
  52. Karim MH, Faraj BM. Comparative evaluation of a dynamic navigation system versus a three-dimensional microscope in retrieving separated endodontic files: an in vitro study. J Endod. 2023;49(9):1191–1198. doi: 10.1016/j.joen.2023.06.014 EDN: FEXUAS
  53. Kim D, Ku H, Nam T, et al. Influence of size and volume of periapical lesions on the outcome of endodontic microsurgery: 3-dimensional analysis using cone-beam computed tomography. J Endod. 2016;42(8):1196–1201. doi: 10.1016/j.joen.2016.05.006
  54. Aldahmash SA, Price JB, Mostoufi B, et al. Real-time 3-dimensional dynamic navigation system in endodontic microsurgery: a cadaver study. J Endod. 2022;48(7):922–929. doi: 10.1016/j.joen.2022.04.012 EDN: QGEFPE
  55. Gambarini G, Galli M, Stefanelli LV, et al. Endodontic microsurgery using dynamic navigation system: a case report. J Endod. 2019;45(11):1397–1402.e6. doi: 10.1016/j.joen.2019.07.010
  56. Fu W, Chen C, Bian Z, Meng L. Endodontic microsurgery of posterior teeth with the assistance of dynamic navigation technology: a report of three cases. J Endod. 2022;48(7):943–950. doi: 10.1016/j.joen.2022.03.010 EDN: JOAKBJ
  57. Lu YJ, Chiu LH, Tsai LY, Fang CY. Dynamic navigation optimizes endodontic microsurgery in an anatomically challenging area. J Dent Sci. 2022;17(1):580–582. doi: 10.1016/j.jds.2021.07.002 EDN: KLCXSM
  58. Chen C, Zhang R, Zhang W, et al. Analysis of the accuracy of a dynamic navigation system in endodontic microsurgery: A prospective case series study. J Dent. 2023;134:104534. doi: 10.1016/j.jdent.2023.104534 EDN: BGVJXR
  59. Wang Z, Guo X, Chen C, et al. Effect of field of view and voxel size on CBCT-based accuracy of dynamic navigation in endodontic microsurgery: an in vitro study. J Endod. 2023;49(8):1012–1019. doi: 10.1016/j.joen.2023.05.018 EDN: EYLTSC
  60. Martinho FC, Griffin IL, Tordik PA. Piezoelectric device and dynamic navigation system integration for bone window-guided surgery. J Endod. 2023;49(12):1698–1705. doi: 10.1016/j.joen.2023.09.013 EDN: HMIPGY
  61. Guo Y, Xu DD, Lv K, et al. Use of computer-assisted navigation in the retrieval of accidentally displaced third molars. J Oral Maxillofac Surg. 2016;74(5):889–894. doi: 10.1016/j.joms.2015.12.015
  62. Pellegrino G, Lizio G, Ferri A, Marchetti C. Flapless and bone-preserving extraction of partially impacted mandibular third molars with dynamic navigation technology. A report of three cases. Int J Comput Dent. 2021;24(3):253–262.
  63. Emery RW, Korj O, Agarwal R. A review of in-office dynamic image navigation for extraction of complex mandibular third molars. J Oral Maxillofac Surg. 2017;75(8):1591–1600. doi: 10.1016/j.joms.2017.03.031
  64. Lutz JC, Hostettler A, Agnus V, et al. A new software suite in orthognathic surgery: patient specific modeling, simulation and navigation. Surg Innov. 2019;26(1):5–20. doi: 10.1177/1553350618803233
  65. Berger M, Nova I, Kallus S, et al. Electromagnetic navigated condylar positioning after high oblique sagittal split osteotomy of the mandible: a guided method to attain pristine temporomandibular joint conditions. Oral Surg Oral Med Oral Pathol Oral Radiol. 2018;125(5):407–414.e1. doi: 10.1016/j.oooo.2017.12.007
  66. Brouwer de Koning SG, Geldof F, van Veen RLP, et al. Electromagnetic surgical navigation in patients undergoing mandibular surgery. Sci Rep. 2021;11(1):4657. doi: 10.1038/s41598-021-84129-5 EDN: MXJDYY
  67. Chowdhury SKR, Mishra A, Saxena V, et al. Application of navigation surgery in temporomandibular joint ankylosis case and review of literature. J Maxillofac Oral Surg. 2020;19(1):44–46. doi: 10.1007/s12663-019-01231-y
  68. Sukegawa S, Kanno T, Furuki Y. Application of computer-assisted navigation systems in oral and maxillofacial surgery. Jpn Dent Sci Rev. 2018;54(3):139–149. doi: 10.1016/j.jdsr.2018.03.005
  69. Ji Y, Jiang H, Wan L, Yuan H. Effect of navigation system on removal of foreign bodies in head and neck surgery. J Craniofac Surg. 2018;29(7):e723–e726. doi: 10.1097/SCS.0000000000004986
  70. Zhang C, Wu J, Yang C, et al. New solutions to improve the accuracy of the navigation-guided foreign body removal in craniomaxillofacial deep space. J Craniofac Surg. 2020;31(6):e577–e580. doi: 10.1097/SCS.0000000000006584 EDN: HZTNHI
  71. Tokgöz E, Carro MA. Cosmetic and reconstructive facial plastic surgery related simulation and optimization efforts. In: Cosmetic and Reconstructive Facial Plastic Surgery. 2023. P. 231–256. doi: 10.1007/978-3-031-31168-0_7
  72. Soh HY, Hu LH, Yu Y, et al. Navigation-assisted maxillofacial reconstruction: accuracy and predictability. Int J Oral Maxillofac Surg. 2022;51(7):874–882. doi: 10.1016/j.ijom.2021.11.008 EDN: UQGACE
  73. Zhang WB, Soh HY, Yu Y, et al. Improved procedure for Brown’s Class III maxillary reconstruction with composite deep circumflex iliac artery flap using computer-assisted technique. Comput Assist Surg (Abingdon). 2021;26(1):9–14. doi: 10.1080/24699322.2021.1876168
  74. Sozzi D, Filippi A, Canzi G, et al. Surgical navigation in mandibular reconstruction: accuracy evaluation of an innovative protocol. J Clin Med. 2022;11(7):2060. doi: 10.3390/jcm11072060 EDN: SMPYIW
  75. Han C, Dilxat D, Zhang X, et al. Does intraoperative navigation improve the anatomical reduction of intracapsular condylar fractures? J Oral Maxillofac Surg. 2018;76(12):2583–2591. doi: 10.1016/j.joms.2018.07.030
  76. Khatib B, Cuddy K, Cheng A, et al. Functional anatomic computer engineered surgery protocol for the management of self-inflicted gunshot wounds to the maxillofacial skeleton. J Oral Maxillofac Surg. 2018;76(3):580–594. doi: 10.1016/j.joms.2017.10.017 EDN: YDZQDR
  77. He Y, Huang T, Zhang Y, et al. Application of a computer-assisted surgical navigation system in temporomandibular joint ankylosis surgery: a retrospective study. Int J Oral Maxillofac Surg. 2017;46(2):189–197. doi: 10.1016/j.ijom.2016.10.006
  78. Riad Deglow E, Toledano Gil S, Zubizarreta-Macho Á, et al. Influence of the computer-aided static navigation technique and mixed reality technology on the accuracy of the orthodontic micro-screws placement. An In Vitro Study. J Pers Med. 2021;11(10):964. doi: 10.3390/jpm11100964 EDN: JSMQGT
  79. Yuan F, Wang Y, Zhang Y, et al. An automatic tooth preparation technique: A preliminary study. Sci Rep. 2016;6:25281. doi: 10.1038/srep25281
  80. Jain SD, Carrico CK, Bermanis I, Rehil S. Intraosseous anesthesia using dynamic navigation technology. J Endod. 2020;46(12):1894–1900. doi: 10.1016/j.joen.2020.09.001 EDN: MWOMKB
  81. Wang Z, Chen C, Qin L, et al. Accuracy and efficiency of endodontic microsurgery assisted by dynamic navigation based on two different registration methods: an in vitro study. J Endod. 2023;49(9):1199–1206. doi: 10.1016/j.joen.2023.06.012 EDN: TKMAHN
  82. Wang X, Shujaat S, Meeus J, et al. Performance of novice versus experienced surgeons for dental implant placement with freehand, static guided and dynamic navigation approaches. Sci Rep. 2023;13(1):2598. doi: 10.1038/s41598-023-29633-6 EDN: SZDRWG
  83. Block MS, Emery RW. Static or dynamic navigation for implant placement-choosing the method of guidance. J Oral Maxillofac Surg. 2016;74(2):269–277. doi: 10.1016/j.joms.2015.09.022
  84. Block MS. Treatment planning and perioperative management of the dental implant patient. Perioperative Assessment of the Maxillofacial Surgery Patient. 2018. P. 433–454. doi: 10.1007/978-3-319-58868-1_31
  85. Pellegrino G, Mangano C, Mangano R, et al. Augmented reality for dental implantology: a pilot clinical report of two cases. BMC Oral Health. 2019;19(1):158. doi: 10.1186/s12903-019-0853-y EDN: EUFMNR
  86. Lam K, Bigcas JL, Luong A, et al. Flexible microsensor technology for real-time navigation tracking in balloon sinus ostial dilation. Allergy Rhinol (Providence). 2017;8(1):20–24. doi: 10.2500/ar.2017.8.0193
  87. HPS2-THRIVE Collaborative Group, Landray MJ, Haynes R, et al. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014;371(3):203–212. doi: 10.1056/NEJMoa1300955
  88. Esposito A, Palmisano A, Antunes S, et al. Cardiac CT with delayed enhancement in the characterization of ventricular tachycardia structural substrate: relationship between CT-segmented scar and electro-anatomic mapping. JACC Cardiovasc Imaging. 2016;9(7):822–832. doi: 10.1016/j.jcmg.2015.10.024

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Source selection algorithm.

Download (285KB)

Copyright (c) 2025 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86295 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80635 от 15.03.2021 г
.