КВЧ-терапия в комплексном лечении пародонтита у пациентов с зубочелюстными аномалиями: патогенетические и гендерные аспекты



Цитировать

Полный текст

Аннотация

Цель исследования - изучение гендерных особенностей влияния комплексного лечения с использованием КВЧ-волн на реологические свойства крови у пациентов с хроническим генерализованным пародонтитом (ХГП) легкого и среднетяжелого течения и зубочелюстными аномалиями (ЗЧА) и деформациями. Обследованы 80 пациентов (43,8% мужчин) с ХГП и ЗЧА и деформациями в возрасте 42 ± 5 лет: 41 пациент (43,9% мужчин, 56,1% женщин) имел легкое течение заболевания, 39 пациентов (43,6% мужчин, 56,4% женщин) - среднетяжелое течение. Контрольная группа - 40 здоровых добровольцев (50% мужчин, 50% женщин) в возрасте 31 ± 7 лет. Изучали динамику вязкости крови в диапазоне скоростей сдвига от 300 до 5 с -1, деформируемости эритроцитов, а также агрегацию эритроцитов и тромбоцитов на фоне комплексного лечения с использованием КВЧ-волн. Комплексное лечение с использованием КВЧ-волн у пациентов со среднетяжелым течением ХГП способствует восстановлению нарушений вязкости крови и реологических свойств эритроцитов и тромбоцитов (агрегация и деформируемость). Проведенная терапия у женщин приводила к полному восстановлению реологических свойств крови, а у мужчин - лишь к частичному. У пациентов с ХГП легкого течения консервативное и аппаратурное лечение не оказывало значимого влияния на реологические свойства крови.

Полный текст

Введение Хронический генерализованный пародонтит (ХГП) - часто встречающееся заболевание, особенно среди лиц старших возрастных групп [1], и требующее комплексного лечения. Нарушения микроциркуляции крови занимают важное место в патогенезе данной патологии [2, 3]. Среди аспектов, определяющих состояние микроциркуляции, выделяются реологические свойства крови и система гемостаза [4]. У пациентов с ХГП и аномалиями окклюзии и зубных рядов проявляется выраженный эффект коморбидности [5], реализующийся помимо прочего за счет микроциркуляторных изменений [6]. В последние годы внимание ученых привлекла проблема возможностей медицинского применения низкоинтенсивных электромагнитных излучений (ЭМИ) крайне высокочастотного (КВЧ) и терагерцевого (ТГЧ) диапазонов (30-300 и 100-10 ГГц соответственно). В частности, в Саратовском ГМУ им. В. И. Разумовского сформировалась научная школа, ученые которой одними из первых изучили биологические эффекты КВЧ- и ТГЧ-волн и способствовали внедрению методов терапии, основанных на их использовании, в клиническую практику [7-10]. Механизмы влияния ЭМИ на организм до конца не изучены. Существует мнение, что ЭМИ воздействуют на мембрану клетки, обусловливая конформационные изменения молекул липидов, белков и ферментов, что модулирует функцию клетки [11]. Одним из способов использования КВЧ-волн является воздействие на биологически активные точки. Предполагают, что эффект влияния ЭМИ через данные зоны объясняется наличием в них специальных электро- магниторецепторов [12], при этом данные излучения из-за своей малой мощности не оказывают негативного влияния на клетки в зоне воздействия и хорошо переносятся организмом. Другой доминирующей гипотезой в области терапии, основанной на использовании волн КВЧ-диапазона (далее по тексту - КВЧ-терапия), является резонансный отклик в биологических тканях на КВЧ-излучение на определенных частотах (частотах колебаний различных биологически активных веществ и молекул) [11, 13, 14]. К молекулам, имеющим значение для ЭМИ-терапии, по мнению ряда исследователей, относятся молекулы воды, оксида азота, кислорода, белков и др. [15, 16], хотя в основном способность влияния на указанные агенты изучена для волн ТГЧ-диапазона [10, 17]. Имеются данные исследований о том, что КВЧ-терапия, воздействуя на определенные биологически активные точки лица, положительно влияет на различные нарушения в системе гемостаза [18]. Эффективность подобной КВЧ-терапии имеет гендерные различия у пациентов с ХГП средней степени тяжести [19], в частности, полное восстановление функции эндотелия отмечалось только у женщин, тогда как у мужчин тромборезистентность сосудистой стенки восстанавливалась только частично. Кроме того, в эксперименте показано влияние КВЧ-излучения на бактериальные клетки (E. coli [20]), способствующее повышению их чувствительности к антибиотикам. Это создает предпосылки для продолжения исследований методов лечения воспалительных процессов, протекающих с участием бактериальной флоры, с использованием КВЧ-диапазона для повышения эффективности антибиотикотерапии. Это представляет потенциальный клинический интерес, так как известно, что типичный анаэроб полости рта Porphyromonas gingivalis способствует активации тромбоцитов in vitro с усилением агрегации при наличии коллагена и во всех случаях - in vivo [21, 22]. В работе В. Ф. Киричука и соавт. [23] уже было указано на целесообразность использования КВЧ-диапазона в комплексном лечении больных ХГП, так как это повышает эффективность лечения с точки зрения коррекции нарушений микроциркуляции крови. Однако в исследовании этих авторов не оценивались вероятные гендерные особенности влияния КВЧ- волн на реологические свойства крови. Между тем в наших ранее опубликованных работах [24, 25] был показан ряд различий между пациентами с ХГП мужского и женского пола в вязкости крови, деформационных способностях эритроцитов и агрегационной активности эритроцитов и тромбоцитов. При этом данные различия зависели от тяжести течения ХГП. Целью данного исследования было изучение гендерных особенностей влияния комплексного лечения с использованием КВЧ-волн на реологические свойства крови у больных ХГП при наличии отягощающего фактора в виде зубочелюстных аномалий (ЗЧА). Материал и методы Группы исследования В исследование было включено 80 пациентов (35 мужчин и 45 женщин) в возрасте от 32 до 55 лет (M± SD - 42 ± 5 лет) с ХГП, из них 41 пациент (18 мужчин и 23 женщины) имели легкое течение заболевания, 39 пациентов (17 мужчин и 22 женщины) - среднетяжелое течение. У пациентов выявляли такие ЗЧА, как скученное расположение зубов, сужения зубных рядов, аномалии окклюзии. Контрольную группу составили 40 практически здоровых добровольцев (20 мужчин и 20 женщин) в возрасте от 20 до 50 лет (M ± SD - 31 ± 7 лет) без признаков патологии десен. Всем включенным в исследование лицам было проведено комплексное обследование для уточнения стоматологического статуса. Диагноз ХГП устанавливали в соответствии с современной систематикой заболеваний пародонта [26]. Степень тяжести течения заболевания определяли по критериям, представленным в работе [6]. Стоматологический статус оценивали в соответствии с рекомендациями [27]. Лабораторная диагностика ЗЧА предусматривала анализ контрольнодиагностических моделей и результатов рентгенологических исследований (ортопантомографии, телерентгенографии или компьютерной томографии). Лечебные мероприятия у пациентов с ХГП и ЗЧА включали: - обучение правилам гигиены полости рта с последующим контролем с помощью эритрозина красного; назначение индивидуального гигиенического режима полости рта, который предусматривал чистку зубов после каждого приема пищи, индивидуально подбиралась зубная щетка и паста; - профессиональную гигиену полости рта - после антисептической обработки и обезболивания удаляли наддес- невые и поддесневые назубные отложения ультразвуковым инструментом Piezon Master 600 («EMS», Швейцария) с последующей полировкой поверхности коронки и корня зуба; - устранение местных факторов, способствующих скоплению и активации действия микробного фактора (пломбирование придесневых кариозных полостей, устранение дефектов пломб); - по показаниям коррекцию мягких тканей преддверия полости рта; - нормализацию окклюзии и восстановление межзубных контактов ортодонтическими аппаратами (самолигирующие- ся брекет-системы, Innovation-R, Innovation-C, GAC, Япония); - шинирование подвижных зубов с применением материалов на основе неорганической матрицы-стекловолокна (GlasSpan, США, и Fiber Splint, Швейцария) и жидкотекучих фотополимерных композитов; - функциональное избирательное пришлифовывание, выравнивание окклюзионной поверхности для исключения формирования травматических узлов, поддерживающих воспаление; - местную противовоспалительную терапию: обработку пародонтальных карманов антисептиком - 0,2% раствором хлоргексидина биглюконата; применяли лечебные повязки Диплен-дента («Норд-Ост», Россия), изготовленные на основе поливиниловых соединений, которые обладают высокой антибактериальной активностью за счет импрегнации активными компонентами (метронидазола гемисукцинатом, лин- комицина гидрохлоридом, дексаметазона фосфатом, хлоргек- сина биглюконатом, лидокаина гидрохлоридом в сочетании с хлоргексидина биглюконатом). Эти вещества выделяются по мере рассасывания пленки. Курс лечения составлял 6-8 аппликаций; - при обострении промывание пародонтальных карманов 0,2% раствором хлоргексидина и введение в них тетрацикли- новых нитей; - по показаниям кюретаж пародонтальных карманов; - общее лечение: назначение нестероидных противовоспалительных препаратов, таких как ибупрофен, напроксен, которые оказывают выраженное противовоспалительное действие, а также позволяют добиться прекращения или замедления убыли костной ткани; - КВЧ-терапию в качестве компонента патогенетической терапии, направленной на коррекцию микроциркулятор- ных расстройств. Источником КВЧ-излучения был аппарат «Явь-1» («Исток-Система», Россия) с рабочей длиной волны 5,6 мм (частота 53,53 ГГц). КВЧ-терапию проводили в режиме частотной модуляции около фиксированной частоты не более ± 0,05 при плотности мощности облучения 10 мВт/ см2. Воздействовали на биологически активные точки лица (Cv-26, Cv-27, St-7, St-8) [18]. Курс лечения состоял из 10 процедур по 30 мин. Продолжительность курса физиотерапевтического воздействия 10 дней. Кровь у пациентов и доноров-добровольцев брали из локтевой вены и стабилизировали 3,8% раствором цитрата натрия в соотношении 9:1. Забор крови у пациентов с воспалительными заболеваниями пародонта осуществляли до начала и после лечения (1-й и 10-й дни соответственно). Исследование агрегационной функции тромбоцитов Обогащенную тромбоцитами плазму готовили путем центрифугирования цельной крови при 1000 об/мин (200 g) в течение 7 мин. Бедную тромбоцитами плазму получали центрифугированием осадка клеток крови, оставшегося после отбора обогащенной плазмы, при 3000 об/мин (150 g) в течение 15 мин. Таблица 1. Динамика показателей АДФ- и коллагениндуцированной агрегации кровяных пластинок у пациентов с ХГП легкого течения и ЗчА на фоне лечения Показатель Группа максимальный размер образующихся агрегатов, усл. ед. максимальная скорость образования наибольших агрегатов, усл. ед. максимальная степень агрегации,% максимальная скорость агрегации,%/мин АДФ-индуцированная агрегация Контроль: мужчины (п = 20) 2,22 (2,08; 2,52) 2,57 (2,21; 3,31) 40,2 (37,1; 45,3) 35,3 (32,5; 40,2) Контроль: женщины (п = 20) 2,42 (2,15; 2,62) 2,61 (2,24; 3,45) 51,8 (42,4; 55,6) 38,9 (34,7; 43,2) р3 = 0,071 р3 = 0,089 р3 = 0,012 р3 = 0,051 ХГП1: мужчины (п = 18) 2,26 (2,15; 2,47) 2,67 (2,34; 3,13) 42,0 (39,0; 47,0) 36,5 (31,7; 41,4) р2 = 0,740 р2 = 0,604 р2 = 0,271 р2 = 0,678 ХГП1: женщины (п = 23) 2,61 (2,32; 2,83) 2,81 (2,74; 3,55) 56,5 (48,5; 57,3) 42,2 (35,4; 46,6) р2 = 0,274 р2 = 0,128 р2=0,140 р2 = 0,194 р3 = 0,101 р3 = 0,081 р3=0,025 р3 = 0,126 ХГП2: мужчины (п = 18) 2,24 (2,07; 2,48) 2,59 (2,19; 3,26) 41,7 (32,0; 54,3) 35,7 (32,3; 40,8) рг = 0,764 р3 = 0,917 р3 = 0,493 р = 0,771 р2 = 0,820 р2 = 0,966 р2 = 0,319 р2 = 0,841 ХГП2: женщины (п = 23) 2,51 (2,20; 2,83) 2,75 (2,36; 3,58) 53,7 (48,3; 56,8) 39,4 (36,7; 45,2) р1 = 0,227 р1 = 0,235 р1 = 0,143 р1 = 0,434 р2 = 0,622 р2 = 0,607 р2 = 0,777 р2 = 0,695 р3 = 0,052 р3 = 0,043 р3 = 0,039 р3 = 0,049 Коллагениндуцированная агрегация Контроль: мужчины (п = 20) 2,43 (2,13; 2,68) 2,43 (2,21; 3,02) 48,5 (44,3; 53,4) 33,7 (31,2; 38,5) Контроль: женщины (п = 20) 2,56 (2,24; 2,76) 2,48 (2,13; 2,99) 59,7 (54,7; 66,2) 35,5 (34,6; 40,1) р3 = 0,061 р3 = 0,233 р3 = 0,011 р3 = 0,056 ХГП1: мужчины (п = 18) 2,46 (2,16; 2,74) 2,47 (2,25; 3,17) 49,6 (45,8; 58,3) 34,6 (30,9; 39,5) р2 = 0,547 р2 = 0,648 р2 = 0,340 р2 = 0,561 ХГП1: женщины (п = 23) 2,89 (2,64; 3,51) 3,12 (2,51; 4,01) 63,4 (55,7; 68,7) 37,4 (34,9; 42,3) р2 = 0,037 р2 = 0,047 р2 = 0,140 р2 = 0,144 р3 = 0,064 р3 = 0,071 р3 = 0,014 р3 = 0,213 ХГП2: мужчины (п = 18) 2,46 (2,16; 2,78) 2,45 (2,18; 3,12) 49,2 (45,8; 57,7) 34,0 (31,3; 38,9) р1 = 0,966 р1 = 0,764 р1 = 0,884 р1 = 0,884 р2 = 0,966 р2 = 0,764 р2 = 0,455 р2 = 0,820 ХГП2: женщины (п = 23) 2,51 (2,18; 2,73) 2,42 (2,10; 2,87) 60,1 (56,3; 64,2) 36,4 (35,1; 42,3) р1 = 0,026 р1 = 0,028 р1 = 0,194 р1 = 0,291 р2 = 0,758 р2 = 0,607 р2 = 0,414 р2 = 0,567 р3 = 0,256 р3 = 0,218 р3 = 0,033 р3 = 0,058 П р и м е ч а н и е. Здесь и в табл. 2 - 5: ХГП1 - значения показателей до начала лечения; ХГП2 - значения показателей после лечения; р1 - статистическая значимость отличий от аналогичного показателя в данной группе до лечения; р2 - статистическая значимость отличий от лиц того же пола в группе контроля; р3 - статистическая значимость отличий от мужчин с аналогичным клиническим статусом и типом индукции агрегации. Агрегацию тромбоцитов исследовали с помощью компьютеризированного двухканального лазерного анализатора агрегации тромбоцитов 230LA «Biola» (НФП «Биола», Россия). Турбидиметрический метод [28] основан на регистрации изменений светопропускания обогащенной тромбоцитами плазмы. Также использовали метод, предусматривающий анализ флюктуации светопропускания плазмы (ФСП-метод), вызванной случайным изменением количества и размера тромбоцитов и их агрегатов в тонком лазерном оптическом канале [28]. Относительная дисперсия таких флюктуаций пропорциональна среднему размеру агрегатов и используется для исследования кинетики агрегации. Сочетание турби- диметрического и ФСП-метода в лазерном анализаторе агрегации тромбоцитов позволяет с высокой точностью анализировать процесс агрегации тромбоцитов [28]. Исследование агрегации тромбоцитов проводили не позднее чем через 3 ч после взятия крови. Таблица 2. Динамика показателей АДФ- и коллагениндуцированной агрегации кровяных пластинок у пациентов с ХГП среднетяжелого течения и ЗчА на фоне лечения Группа Показатель максимальный размер образующихся агрегатов, усл. ед. максимальная скорость образования наибольших агрегатов, усл. ед. максимальная степень агрегации,% максимальная скорость агрегации,%/мин Контроль ХГП1: мужчины (п = 17) АДФ-индуцированная агрегация См. табл. 1 2,97 (2,30; 3,72) 3,12 (2,93; 4,02) 48,9 (43,8; 51,9) 42,4 (36,4; 46,7) р2 = 0,032 р2 = 0,038 р2 = 0,032 р2 = 0,038 ХГП1: женщины (п = 22) 3,45 (2,98; 4,18) 3,68 (3,17; 4,86) 62,5 (57,3; 69,8) 50,3 (44,9; 56,8) р2 < 0,001 р2 = 0,009 р2 < 0,001 р2 < 0,001 р3 = 0,053 р3 = 0,221 р3 = 0,014 р3 = 0,013 ХГП2: мужчины (п = 17) 2,49 (2,15; 2,98) 2,69 (2,15; 3,27) 40,7 (36,5; 44,4) 37,3 (31,4; 39,2) р1 = 0,047 р1 = 0,028 р1 = 0,038 р1 = 0,034 р2 = 0,329 р2 = 0,648 р2 = 0,900 р2 = 0,561 ХГП2: женщины (п = 22) 2,46 (2,21; 2,85) 2,68 (2,36; 3,62) 55,6 (46,8; 57,3) 40,5 (35,8; 45,4) р1 = 0,026 р1 = 0,028 р1 < 0,001 р1 = 0,006 р2 = 0,274 р2 = 0,291 р2 = 0,194 р2 = 0,227 р3 = 0,218 р3 = 0,681 р 3= 0,023 р3 = 0,164 Контроль ХГП1: мужчины (п = 17) Коллагениндуцированная агрегация См. табл. 1 3,28 (3,12; 4,15) 3,12 (2,93; 4,01) 58,7 (53,5; 63,2) 41,3 (38,8; 45,3) р2 = 0,015 р2 = 0,034 р2 = 0,004 р2 = 0,008 ХГП1: женщины (п = 22) 4,18 (3,56; 4,43) 3,58 (3,19; 4,76) 73,8 (68,5; 78,4) 46,7 (44,5; 50,2) р2 < 0,001 р2 = 0,006 р2 < 0,001 р2 < 0,001 р3 = 0,044 р3 = 0,213 р3 = 0,008 р3 = 0,038 ХГП2: мужчины (п = 17) 2,98 (2,71; 3,45) 2,70 (2,56; 3,47) 50,7 (45,4; 55,7) 35,1 (32,7; 42,1) р1 = 0,039 р1 = 0,047 р1 = 0,012 р« = 0,022 р2 = 0,017 р2 = 0,036 р2 = 0,194 р2 = 0,074 ХГП2: женщины (п = 22) 2,68 (2,24; 2,81) 2,83 (2,32; 3,56) 54,3 (49,3; 58,9) 39,8 (36,4; 45,6) р1 < 0,001 р1 = 0,012 р1 < 0,001 р1 = 0,003 р2 = 0,140 р2 = 0,274 р2 = 0,127 р2 = 0,227 р3 = 0,031 р3 = 0,322 р3 = 0,161 р3 = 0,032 Перед регистрацией агрегатограммы с целью повышения достоверности результатов для каждого испытуемого проводили калибровку прибора, так как известна индивидуальная изменчивость светопропускания плазмы крови. Для этого выполняли регистрацию светопропускания обогащенной тромбоцитами плазмы с добавлением 10 мкл 100 мМ раствора этилендиаминтетраацетата (ЭДТА), а также регистрацию светопропускания бедной тромбоцитами плазмы. При калибровке светопропускание обогащенной тромбоцитами плазмы принимали за 0, светопропускание бедной тромбоцитами плазмы - за 100%. Средневзвешенный радиус обогащенной тромбоцитами плазмы принимался за 1 усл. ед. Раствор ЭДТА добавляли в плазму с целью блокирования возможной спонтанной агрегации тромбоцитов [28]. Агрегацию тромбоцитов регистрировали в обогащенной тромбоцитами плазме объемом 300 мкл при температуре термостатирования в рабочем гнезде агрегометра 37°С и скорости перемешивания 800 об/мин [28]. В качестве индукторов агрегации использовали раствор аденозиндифосфата (АДФ) в конечной концентрации 2,5 мкМ («Технология- Стандарт», Россия) и раствор коллагена в концентрации 1 мг/мл («Технология-Стандарт», Россия). Учитывали следующие показатели агрегатограмм: - максимальный размер образующихся тромбоцитарных агрегатов (в усл. ед.); - максимальную скорость образования наибольших тром- боцитарных агрегатов (в усл. ед.); - максимальную степень агрегации (в %); - максимальную скорость агрегации (в %/мин). Исследование вязкости крови Для изучения реологических особенностей крови мы использовали ротационный вискозиметр со свободноплавающим цилиндром АКР-2. Реологическое исследование проводили не позднее чем через 3 ч после взятия образца крови. Образцы исследуемого материала в объеме 0,85 мл заливали в пластмассовую измерительную ячейку, термостатиро- вали в течение 5 мин в специальных ячейках анализатора, после чего в ячейку, заполненную кровью, опускали сухой металлический цилиндр под углом 45°. Основным критерием правильного заполнения измерительной камеры считали способность цилиндра свободно плавать в образце при отсутствии пузырей воздуха в зазоре между цилиндром и стенкой измерительной ячейки. Общее время исследования образца цельной крови, плазмы и сыворотки не превышало 10-15 мин. Измерение проводили в условиях постоянной температуры 37°С в измерительной ячейке, что способствует получению более точных результатов [29]. Таблица 3. Динамика вязкости крови (в мПа-с) у пациентов с ХГП легкой степени тяжести течения и ЗЧА на фоне лечения Скорость сдвига, с-1 Контроль (п = 40) ХГП: исходно (п = 41) ХГП: после лечения (п = 41) мужчины (п = 20) женщины (п = 20) мужчины (п = 18) женщины (п = 23) мужчины (п = 18) женщины (п = 23) 300 3,03 (3,0; 3,1) 2,82 (2,8; 3,0) 3,09 (3,0; 3,1) 2,86 (2,8; 3,0) 3,02 (3,0; 3,1) 2,83 (2,8; 3,0) р1 = 0,850 р1 = 0,724 р2 = 0,950 р2 = 0,618 р2 = 0,983 р2 = 0,633 р3 < 0,001 р3 < 0,001 р3 < 0,001 200 3,03 (3,0; 3,1) 2,82 (2,8; 3,0) 3,09 (3,0; 3,1) 2,86 (2,8; 3,0) 3,02 (3,0; 3,1) 2,83 (2,8; 3,0) р1 = 0,850 р1 = 0,724 р2 = 0,950 р2 = 0,618 р2 = 0,983 р2 = 0,633 р3 < 0,001 р3 < 0,001 р3 < 0,001 150 3,06 (3,0; 3,1) 2,85 (2,8; 3,0) 3,11 (3,0; 3,2) 2,89 (2,8; 3,0) 3,05 (3,0; 3,1) 2,86 (2,8; 3,0) р1 = 0,851 р1 = 0,724 р2 = 0,950 р2 = 0,619 р2 = 0,983 р2 = 0,633 р3 < 0,001 р3 < 0,001 р3 < 0,001 100 3,16 (3,1; 3,2) 2,96 (2,9; 3,1) 3,23 (3,1; 3,3) 3,0 (2,9; 3,1) 3,14 (3,1; 3,2) 2,97 (2,9; 3,1) р1 = 0,678 р1 = 0,724 р2 = 0,704 р2 = 0,431 р2 = 0,950 р2 = 0,533 р3 < 0,001 р3 < 0,001 р3 < 0,001 50 3,56 (3,5; 3,6) 3,28 (3,3; 3,5) 3,66 (3,5; 3,7) 3,32 (3,3; 3,5) 3,51 (3,5; 3,6) 3,27(3,3; 3,5) р1 = 0,678 р1 = 0,364 р2 = 0,704 р2 = 0,431 р2 = 0,851 р2 = 0,533 р3 < 0,001 р3 < 0,001 р3 < 0,001 20 3,98 (3,9; 4,1) 3,71 (3,7; 3,9) 4,07 (4,0; 4,2) 3,75 (3,7; 3,9) 3,95 (3,9; 4,1) 3,71 (3,7; 3,9) р1 = 0,383 р1 = 0,431 р2 = 0,503 р2 = 0,418 р2 = 0,850 р2 = 0,503 р3 < 0,001 р3 < 0,001 р3 < 0,001 10 4,91 (4,7; 5,2) 4,53 (4,1; 4,7) 5,25 (4,8; 5,4) 4,61 (4,1; 4,7) 4,89 (4,7; 5,1) 4,53 (4,1; 4,7) р1 = 0,329 р1 = 0,364 р2 = 0,418 р2 = 0,418 р2 = 0,851 р2 = 0,493 р3 < 0,001 р3 < 0,001 р3 < 0,001 5 5,87 (5,7; 6,2) 5,46 (5,2; 5,7) 6,11 (5,8; 6,3) 5,52 (5,2; 5,7) 5,81 (5,7; 6,1) 5,47 (5,2; 5,7) р1 = 0,262 р1 = 0,364 р2 = 0,383 р2 = 0,419 р2 = 0,704 р2 = 0,493 р3 < 0,001 р3 < 0,001 р3 < 0,001 Исследование вязкости крови выполняли в диапазоне скоростей 300, 200, 150, 100, 50, 20, 10, 5 с-1 для наиболее точной оценки условий текучести крови: вязкость крови при низких скоростях сдвига (до 10-20 с-1) характерна для сосудов микроциркуляторного русла, в интервале 20-100 с-1 - для артерий малого и среднего калибра, а высокие скорости сдвига (более 100-150 с-1) моделируют кровоток в артериях крупного калибра. Способность эритроцитов к агрегации и деформации, их форма и размеры оказывают значительное влияние на вязкость крови, особенно в сосудах с низкими скоростями сдвига (венулы) [29]. Данные процессы лежат в основе неньютоновского поведения крови, определяя зависимость вязкости крови от скорости сдвига. Вязкость крови существенно возрастает при снижении скорости сдвига ниже уровня 10 с-1, что связано с обратимой адгезией красных клеток. Эта кажущаяся вязкость крови уменьшается по мере увеличения скорости сдвига в результате разрушения агрегатов [29]. При скорости сдвига более 100 с-1 агрегатов эритроцитов уже не существует, дисковидные эритроциты приобретают форму эллипса с ротацией мембраны вокруг содержимого клетки. С этого момента кровь ведет себя как ньютоновская жидкость, т. е. ее вязкость становится постоянной (аорта, капилляры). Агрегация эритроцитов (образование линейных агрегатов - «монетных столбиков») - один из основных показателей вязкости крови, поэтому определение ее вклада в изменение вязкостных характеристик весьма важно [29]. Выраженность эритроцитарной агрегации оценивали ориентировочным методом по расчетному индексу агрегации эритроцитов (ИАЭ). ИАЭ рассчитывали как частное от деления величины вязкости крови, измеренной при 20 с-1, на величину вязкости крови, измеренной при 100 с-1. Таблица 4. Динамика вязкости крови (в мПа-с) у пациентов с ХГП средней степени тяжести течения и ЗЧА на фоне лечения Скорость сдвига, с-1 Контроль (п = 40) ХГП: исходно (п = 39) ХГП: после лечения (п = 39) см. табл. 3 мужчины (п = 17) женщины (п = 22) мужчины (п = 17) женщины (п = 22) 300 3,51 (3,2; 3,7) 3,25 (3,1; 3,4) 3,04 (3,0; 3,1) 2,85 (2,8; 3,0) р1 < 0,001 р1 = 0,001 р2 < 0,001 р2 < 0,001 р2 = 0,533 р2 = 0,340 р3 = 0,028 р3 < 0,001 200 3,51 (3,2; 3,7) 3,25 (3,1; 3,4) 3,04 (3,0; 3,1) 2,85 (2,8; 3,0) р1 < 0,001 р1 = 0,001 р2 < 0,001 р2 < 0,001 р2 = 0,533 р2 = 0,340 р3 = 0,028 р3 < 0,001 150 3,51 (3,2; 3,7) 3,25 (3,1; 3,4) 3,11 (3,0; 3,2) 2,87 (2,8; 3,0) р1 < 0,001 р1 = 0,001 р2 < 0,001 р2 < 0,001 р2 = 0,533 р2 = 0,340 р3 = 0,028 р3 < 0,001 100 3,55 (3,3; 3,7) 3,37 (3,1; 3,4) 3,21 (3,1; 3,4) 2,99 (2,9; 3,1) р1 < 0,001 р1 = 0,001 р2 < 0,001 р2 < 0,001 р2 = 0,533 р2 = 0,133 р3 = 0,028 р3 < 0,001 50 3,98 (3,7; 4,3) 3,74 (3,5; 3,8) 3,74 (3,6; 3,8) 3,31 (3,4; 3,5) р1 < 0,001 р1 = 0,001 р2 < 0,001 р2 < 0,001 р2 = 0,046 р2 = 0,133 р3 = 0,029 р3 < 0,001 20 4,61 (4,4; 4,9) 4,28 (4,0; 4,5) 4,11 (4,0; 4,4) 3,74 (3,8; 4,0) р1 < 0,001 р1 < 0,001 р2 < 0,001 р2 < 0,001 р2 = 0,012 р2 = 0,125 р3 = 0,027 р3 < 0,001 10 5,64 (5,3; 6,0) 5,16 (5,0; 5,5) 5,18 (5,1; 5,4) 4,59 (4,2; 4,8) р1 < 0,001 р1 < 0,001 р2 < 0,001 р2 < 0,001 р2 = 0,012 р2 = 0,101 р3 = 0,019 р3 < 0,001 5 6,62 (6,3; 7,0) 6,23 (6,1; 6,5) 6,21 (6,1; 6,7) 5,52 (5,3; 5,7) р1 < 0,001 р1 < 0,001 р2 < 0,001 р2 < 0,001 р2 = 0,012 р2 = 0,101 р3 = 0,019 р3 < 0,001 Деформируемость эритроцитов является одним из важнейших феноменов, позволяющих эритроцитам проходить через сосуды, диаметр которых соизмерим с размерами эритроцитов. Со способностью эритроцитов к деформации связано снижение вязкости цельной крови при скоростях сдвига, превышающих 100 с-1. Индекс деформируемости эритроцитов (ИДЭ), свидетельствующий об их способности к деформации, рассчитывали как отношение величины вязкости крови, измеренной при скорости сдвига 100 с-1, к значению вязкости крови, измеренной при 200 с-1 [29]. Статистический анализ данных Статистическую обработку полученных данных осуществляли при помощи пакета программ Statistica 6.0 («StatSoft Inc.», США). Данные представлены в виде медианы и квартального диапазона -Ме (25%; 75%). Парные сравнения групп выполняли с использованием //-критерия Манна- Уитни. Надежность используемых статистических оценок принимали равной не менее 95%. Результаты и обсуждение Влияние лечения с использованием КВЧ-волн на агре- гационную активность тромбоцитов у пациентов с ХГП и ЗЧА На фоне комплексного лечения у пациентов обоего пола с легким течением ХГП не наблюдалось существенных изменений агрегационных свойств тромбоцитов независимо от индуктора агрегации (АДФ или коллаген) (табл. 1). При этом сохранялись гендерные различия, характерные для здоровых лиц и пациентов с легким ХГП до лечения (см. нашу предшествующую работу [24]). Исключение составляло только статистически значимое (р < 0,05) снижение после курса лечения до уровня у здоровых лиц максимального размера образующихся агрегатов и максимальной скорости образования наибольших агрегатов у женщин при коллагениндуцирован- ной агрегации (см. табл. 1), которое нивелирует гендерные различия, наблюдаемые до лечения. Таблица 5. Динамика функциональных параметров эритроцитов у пациентов с ЗЧА и ХГП легкой и средней степени тяжести течения на фоне лечения Группа Исходно После лечения ИАЭ, усл. ед. ИДЭ, усл. ед. ИАЭ, усл. ед. ИДЭ, усл. ед. Группа контроля (п = 40) Мужчины (п = 20) 1,26 (1,25; 1,27) 1,04 (1,04; 1,06) Женщины (п = 20) 1,25 (1,24; 1,26) 1,05 (1,04; 1,06) р3 = 0,648 р3 = 0,863 ХГП легкого течения (п = 41) Мужчины (п = 18) 1,26 (1,25; 1,27) 1,05 (1,04; 1,06) 1,26(1,25; 1,27) 1,04(1,04; 1,04) р1 = 0,762 р1 = 0,140 р2 = 0,886 р2 = 0,317 р2 = 0,744 р2 = 0,385 Женщины (п = 23) 1,25 (1,24; 1,27) 1,05 (1,04; 1,06) 1,25 (1,24; 1,27) 1,05 (1,04; 1,04) р1 =0,820 р1 = 0,449 р2 = 0,850 р2 = 0,705 р2 =0,650 р2 = 0,705 р3 = 0,298 р3 = 0,886 р3 = 0,856 р3 = 0,899 ХГП среднетяжелого течения (п = 39) Мужчины (п = 17) 1,30 (1,28; 1,31) 1,01 (1,01; 1,03) 1,28 (1,27; 1,29) 1,05 (1,04; 1,06) р1 = 0,028 р1 < 0,001 р2 < 0,001 р2 < 0,001 р2 = 0,037 р2 = 0,325 Женщины (п = 22) 1,27 (1,26; 1,28) 1,04 (1,03; 1,05) 1,25 (1,24; 1,26) 1,05 (1,04; 1,06) р1 = 0,012 р1 = 0,633 р2 = 0,006 р2 = 0,186 р2 = 0,247 р2 = 0,604 р3 = 0,006 р3 = 0,040 р3 = 0,032 р3 = 0,956 У пациентов со среднетяжелым течением ХГП на фоне комбинированной терапии происходило снижение агре- гационной активности тромбоцитов (табл. 2). При этом у женщин наблюдалось полное восстановление до уровня у здоровых лиц [24] всех показателей агрегации независимо от типа индуктора (см. табл. 2), тогда как у мужчин полностью восстанавливались только показатели АДФ- индуцированной агрегации. Агрегационная активность тромбоцитов под действием коллагена у мужчин восстанавливалась частично, не достигая уровня, характерного для мужчин без ХГП (см. табл. 2). Однако общая склонность женщин к повышению уровня агрегационной активности тромбоцитов относительно мужчин [24] сохранялась и после лечения. Влияние лечения с использованием КВЧ-волн на реологические свойства крови у пациентов с ХГП и ЗЧА Результаты нашего исследования свидетельствуют о том, что лечение с использованием КВЧ-волн не оказывало сколько-нибудь значимого влияния на вязкость крови и функциональные свойства эритроцитов у пациентов обоего пола с ХГП легкого течения (табл. 3 и 4). При этом на протяжении всего исследования сохранялись гендерные особенности, подробно обсужденные в нашей предшествующей работе [25]. У пациентов со среднетяжелым течением ХГП независимо от половой принадлежности на фоне лечения наблюдалось существенное (р < 0,001 относительно значений до лечения) снижение вязкости крови при всех скоростях сдвига (см. табл. 4). У женщин вязкость крови достигла уровня у здоровых лиц при всех скоростях сдвига, тогда как у пациентов мужского пола вязкость при малых скоростях сдвига (от 50 до 5 с-1) осталась значимо выше уровня у здоровых мужчин (см. табл. 4). Отметим, что характерная для всех изучаемых групп женщин склонность к более низким значениям вязкости крови по сравнению с аналогичным показателем у мужчин [25] сохранялась и после курса лечения. При изучении функциональных параметров эритроцитов установлено, что у мужчин со среднетяжелым течением ХГП на фоне комбинированного лечения с использованием КВЧ- волн происходит статистически значимое снижение повышенного ИАЭ и повышение ИДЭ (табл. 5), которые исходно отличались от нормального уровня [25]. Однако данные показатели в итоге все же не достигали уровня у здоровых лиц, т. е. наблюдалось частичное восстановление свойств эритроцитов. У женщин аналогичного клинического статуса комплексная терапия с использованием КВЧ-волн в отличие от мужчин приводила к полному восстановлению агрегационной активности эритроцитов, и ИАЭ после лечения не отличался от значений в контрольной группе (см. табл. 5). ИДЭ у женщин в отличие от мужчин со среднетяжелым течением ХГП не претерпел значимых изменений и остался на уровне значений в контрольной группе (см. табл. 5). Полученные результаты позволяют сделать вывод об отсутствии значимого влияния компексного лечения с использованием КВЧ-волн на реологические свойства крови мужчин с ХГП легкого течения, тогда как у женщин наблюдалось восстановление ряда показателей агрегационной активности тромбоцитов до уровня нормы. При среднетяжелом ХГП комплексное лечение способствовало полному восстановлению всех реологических показателей крови (вязкость плазмы, свойства эритроцитов и тромбоцитов) до уровня у здоровых лиц; у мужчин аналогичного клинического статуса происходило только частичное восстановление реологических свойств крови. Следовательно, женщины со среднетяжелым течением ХГП более восприимчивы к комплексной терапии с использованием КВЧ-волн. Тем не менее практически во всех случаях (независимо от тяжести течения ХГП) сохранялись изученные нами ранее [24, 25] гендерные особенности реологических свойств крови, что особенно важно, если учитывать взятую нами группу пациентов с комбинированной (ХГП и ЗЧА) патологией. Наши результаты существенно дополняют данные предыдущих исследований эффективности КВЧ-терапии при ХГП [23]. При этом выраженного влияния коморбидности на эффективность лечения и динамику лабораторных показателей не наблюдается. Это позволяет говорить о расширении показаний для аппаратурной коррекции ЗЧА у пациентов с нетяжелым течением ХГП [30 - 32]. Выявленные гендерные особенности обусловлены, вероятно, половыми различиями биологических эффектов волн миллиметрового и субмиллиметрового диапазонов частот, изученными в экспериментальных [33] и клинических [34] исследованиях. Предполагается, что в основе феномена лежит половой диморфизм чувствительности эндотелия сосудов и форменных элементов крови к КВЧ-воздействию. Установлено, что комплексное лечение, включающее курс КВЧ-терапии, при среднетяжелом ХГП у мужчин вызывает частичное, а у женщин - полное восстановление тромборе- зистентности сосудистой стенки и концентраций маркеров эндотелиальной дисфункции [19]. Гендерные особенности динамики реологии крови на фоне лечения с использованием КВЧ-волн могут являться обоснованием планирования мер воздействия на тромботические процессы и другие нарушения микроциркуляции, наблюдаемые при ХГП [35]. Нарушения реологии крови при ХПГ и возможности их коррекции с использованием КВЧ-терапии имеют особое значение для пациентов с сочетанием ХГП и сердечнососудистых заболеваний. Связь пародонтита и сердечнососудистых заболеваний привлекает внимание ученых во всем мире [36-38 и др.]. Известно, что КВЧ-терапия оказывает гипокоагуляционное воздействие у больных ишемической болезнью сердца, влияя на все основные компоненты системы гемостаза, снижая прокоагулянтный потенциал, увеличивая активность естественных антикоагулянтов и системы фибринолиза [39]. Подобный эффект сохраняется длительное время после окончания воздействия КВЧ-волн, что имеет большое клиническое значение, если принять во внимание хроническое течение генерализованного пародонтита и длительный период аппаратурной коррекции ЗЧА. Заключение Комплексная терапия с использованием КВЧ-волн у пациентов со среднетяжелым течением ХГП способствует восстановлению нарушенных вязкостных свойств крови и функциональных параметров эритроцитов (агрегации и деформируемости) и тромбоцитов (агрегации). При этом отмечается выраженный половой диморфизм восприимчивости реологических свойств крови к проводимому лечению. Так, комплексная терапия у женщин со среднетяжелым ХГП сопровождалась полным восстановлением нарушенных реологических параметров крови, а у мужчин - лишь частичным. Таким образом, можно говорить о большей обоснованности применения данного физиотерапевтического метода в комплексном лечении пациентов женского пола при ХГП и ЗЧА. У пациентов с легким течением ХГП лечение с использованием КВЧ-волн не оказывало значимого влияния на изучаемые реологические свойства крови. Конфликт интересов: исследование выполнено в рамках диссертационной работы А. В. Казанцева на соискание ученой степени кандидата медицинских наук.
×

Об авторах

А. В Казанцев

ГБОУ ВПО «Саратовский ГМУ им. В.И. Разумовского» Минздрава России

410012, г. Саратов

Дмитрий Евгеньевич Суетенков

ГБОУ ВПО «Саратовский ГМУ им. В.И. Разумовского» Минздрава России

Email: suetenkov@gmail.com
410012, г. Саратов

И. В Фирсова

ГБОУ ВПО «Саратовский ГМУ им. В.И. Разумовского» Минздрава России

410012, г. Саратов

Список литературы

  1. Горбачева И.А., Кирсанов А.И., Орехова Л.Ю. Общесоматические аспекты патогенеза и лечения генерализованного пародонтита. Стоматология 2001; 1: 26-30.
  2. Лукиных Л.М., Круглова Н.В. Хронический генерализованный пародонтит. Часть I. Современный взгляд на этиологию и патогенез. Современные технологии в медицине 2011; 1: 123-5.
  3. Scardina G.A., Messina P. Oral microcirculation in post-menopause: a possible correlation with periodontitis. Gerodontology 2012; 29(2): 1045-51.
  4. Киричук В.Ф. Физиология крови. Саратов: Издательство СГМУ; 1998.
  5. Денисова Ю.Л. Периодонтальный статус у больных с зубочелюстно-лицевыми аномалиями в период ортодонтического лечения современной несъемной техникой. Стоматология детского возраста и профилактика 2004; 3(2): 55-7.
  6. Заболевания пародонта / Под ред. Л.Ю. Ореховой СПб: ПолиМедиаПресс; 2004.
  7. Афанасьева Т.Н. 20-летний опыт применения КВЧ-терапии при артериальной гипертензии. Бюллетень медицинских Интернет-конференций. 2012; 2(6): 335-6.
  8. Головачева Т.В., Паршина С.С., Николенко В.Н. и др. Саратовская кардиологическая школа КВЧ-терапии: история развития, достижения, перспективы. Бюллетень медицинских Интернет-конференций. 2012; 2(6): 329-34.
  9. Kirichuk V.F. Special issue of Russian Open Medical Journal dedicated to terahertz waves in medicine. Russian Open Medical Journal 2013; 2: 401.
  10. Kirichuk V.F., Ivanov A.N. Regulatory effects of terahertz waves. Russian Open Medical Journal. 2013; 2: 0402.
  11. Бецкий О.В., Кислов В.В., Лебедева Н.Н. Миллиметровые волны и живые системы. М.: Сайнс-пресс, 2004.
  12. Лиманский Ю.П., Гуляр С.А., Самосюк И.З. Научные основы акупунктуры. Рефлексотерапия 2007; 2: 9-18.
  13. Grundler W., Jentzsch U., Keilmann F. et al. Resonant cellular effects of low intensity microwaves. In: Frohlich H., ed. Biological Coherence and Response to External Stimuli. Berlin etc.: Springer; 1988: 65-85.
  14. Самосюк И.З., Чухраев Н.В., Писанко О.И. Эко-физическое обоснование применения ЭМВ ММ-диапазона и синглетно-кислородной терапии. Бюллетень медицинских Интернет-конференций. 2012; 2(6): 384-90.
  15. Синицын Н.И., Ёлкин В.А., Синицына Р.В., Бецкий О.В. Структуризация воды аминокислотами разных классов. Бюллетень медицинских Интернет-конференций. 2012; 2(6): 367-74.
  16. Иванов А.Н. Электромагнитные волны терагерцевого диапазона на частотах молекулярного спектра оксида азота 150,176150,664 ГГц в коррекции экспериментальных гемодинамических изменений: Дис.. д-ра мед. наук. Саратов; 2012.
  17. Kirichuk V.F., Tsymbal A.A. Patterns of biological effects of electromagnetic terahertz waves at frequencies of active cellular metabolites of post stressed changes in hemostasis. Russian Open Medical Journal 2013; 2: 0403.
  18. Широков В.Ю. Значение нарушений внутрисосудистого компонента микроциркуляции в патогенезе хронического генерализованного пародонтита у больных с патологией желудочнокишечного тракта и в динамике лечения. Дисс.. д-ра мед. наук. Саратов, 2009.
  19. Широков В.Ю., Иванов А.Н., Данилов А.С. Половые различия изменений функций эндотелия сосудистой стенки в динамике лечения хронического генерализованного пародонтита с использованием миллиметровых волн. Фундаментальные исследования. 2013; 9(4): 756-9.
  20. Пронина Е.А., Шуб Г.М. Влияние электромагнитного излучения на бактериальные клетки. Бюллетень медицинских Интернет-конференций. 2012; 2(6): 375-9.
  21. Naito M., Sakai E., Shi Y. et al. Porphyromonas gingivalis-induced platelet aggregation in plasma depends on Hgp44 adhesin but not Rgp proteinase. Mol. Microbiol. 2006; 59(1): 152-67.
  22. Yu K.M., Inoue Y., Umeda M. et al. The periodontal anaerobe Porphyromonas gingivalis induced platelet activation and increased aggregation in whole blood by rat model. Thromb. Res. 2011; 127(5): 418-25.
  23. Киричук В.Ф., Лепилин А.В., Апальков И.П., Ерокина Н.Л. Микроциркуляторные нарушения у больных хроническим генерализованным пародонтитом и их коррекция методом КВЧ-терапии. Бюллетень сибирской медицины. 2003; 2: 99-103.
  24. Казанцев А.В., Суетенков Д.Е. Гендерные особенности агрегационных свойств тромбоцитов у больных с хроническим генерализованным пародонтитом. Пародонтология. 2014; 19(1): 7-12.
  25. Казанцев А.В., Суетенков Д.Е., Андронов Е.В., Фирсова И.В. Гендерные особенности реологических свойств крови (вязкость плазмы, агрегационные и деформационные свойства эритроцитов) у больных с хроническим генерализованным пародонтитом. Саратовский научно-медицинский журнал. 2014; 10(1): 56-61.
  26. Дмитриева Л.А. Современные аспекты клинической пародонтологии. М.: МЕДпресс; 2001.
  27. Иванов В.С. Заболевания пародонта. М.: Медицина; 1989.
  28. Габбасов В.А., Попков Е.Г., Гаврилов И.Ю. и др. Новый высокочувствительный метод анализа агрегации тромбоцитов. Лабораторное дело. 1989; 10: 15-8.
  29. Ройтман Е.В. Клиническая гемореология. Тромбоз, гемостаз, реология. 2003; 3: 13-27.
  30. Caffesse R.G. Management of periodontal disease in patients with occlusal abnormalities. Dent. Clin. N. Am. 1980; 24(2): 215-30.
  31. Gher M.E. Changing concepts. The effects of occlusion on periodontitis. Dent. Clin. N. Am. 1998; 42(2): 285-99.
  32. Ngom P.I., Diagne F., Benoist H.M., Thiam F. Intraarch and interarch relationships of the anterior teeth and periodontal conditions. Angle Orthod 2006; 76(2): 236-42.
  33. Kirichuck V.F., Ivanov A.N., Antipova O.N. et al. Sex-specific differences in changes of disturbed functional activity of platelets in albino rats under the effect of terahertz electromagnetic radiation at nitric oxide frequencies. Bull. Exp. Biol. Med. 2008; 145(1): 75-7.
  34. Головачева Т.В., Киричук В.Ф., Паршина С.С. и др. Использование электромагнитных волн миллиметрового диапазона в комплексном лечении заболеваний сердечно-сосудистой системы. Саратов: Издательство СГМУ; 2006.
  35. Shuntikova E.V., Aleksandrov P.N., Kozhevnikova L.A. Changes in the gingival microcirculatory bed in health and experimental periodontitis. Patol. Fiziol. Eksp. Ter. 1998; 3: 18-20.
  36. Van Dyke T.E., Starr J.R. Unraveling the link between periodontitis and cardiovascular disease. J. Am. Heart Assoc. 2013; 2(6): e000657.
  37. Jeftha A., Holmes H. Periodontitis and cardiovascular disease. SADJ. 2013; 68(2): 60, 62-3.
  38. Tonetti M.S., Van Dyke T.E. Working group 1 of the joint EFP/AAP workshop. Periodontitis and atherosclerotic cardiovascular disease: consensus report of the Joint EFP/AAP Workshop on Periodontitis and Systemic Diseases. J. Clin. Periodontol. 2013; 40 (Suppl. 14): S24-9.
  39. Паршина С.С. Влияние электромагнитного излучения миллиметрового диапазона на состояние системы гемостаза у больных стенокардией: Дисс.. канд. мед. наук. Саратов; 1994.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО "Эко-Вектор", 2015



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86295 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80635 от 15.03.2021 г
.



Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах