Роль митохондриальной дисфункции в патогенезе и лечении воспалительных заболеваний полости рта

Обложка


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Воспалительные заболевания полости рта (ВЗПР) включают в себя множество распространённых заболеваний, таких как пародонтит и пульпит. Основными причинами возникновения ВЗПР являются микроорганизмы, травмы, окклюзионные факторы, аутоиммунные заболевания и лучевая терапия. При неправильном лечении такие заболевания могут не только влиять на здоровье полости рта, но также представлять угрозу для общего состояния здоровья. Поэтому выявление ВЗПР на ранней стадии и изучение новых терапевтических стратегий являются важными задачами исследований, связанных с пероральной терапией.

Митохондрии являются важнейшими органеллами для многих клеточных процессов. Нарушения их функций влияют не только на клеточный метаболизм, но косвенно — на здоровье и продолжительность жизни. Митохондриальная дисфункция вовлечена во многие распространённые полигенные заболевания, включая сердечно-сосудистые и нейродегенеративные. В последнее время появляется всё больше данных, свидетельствующих о том, что митохондриальная дисфункция играет решающую роль в развитии и прогрессировании ВЗПР и связанных с ними системных заболеваний.

В данном обзоре излагаются критические идеи о митохондриальной дисфункции и её роли в воспалительных реакциях при ВЗПР.

Полный текст

Доступ закрыт

Об авторах

Альбина Исуповна Абдуллаева

Государственный научный центр Российской Федерации — Федеральный медицинский биофизический центр имени А.И. Бурназяна

Автор, ответственный за переписку.
Email: albi.95@mail.ru
ORCID iD: 0009-0002-0538-7454
SPIN-код: 4355-9186
Россия, 123098, Москва, ул. Живописная, д. 46

Валентина Николаевна Олесова

Государственный научный центр Российской Федерации — Федеральный медицинский биофизический центр имени А.И. Бурназяна

Email: olesova@implantat.ru
ORCID iD: 0000-0002-3461-9317
SPIN-код: 6851-5618

д-р мед. наук, профессор

Россия, 123098, Москва, ул. Живописная, д. 46

Давид Юрьевич Акопов

Государственный научный центр Российской Федерации — Федеральный медицинский биофизический центр имени А.И. Бурназяна

Email: akopov.85@bk.ru
ORCID iD: 0009-0000-0603-9406
Россия, 123098, Москва, ул. Живописная, д. 46

Егор Евгеньевич Олесов

Государственный научный центр Российской Федерации — Федеральный медицинский биофизический центр имени А.И. Бурназяна

Email: olesov_georgiy@mail.ru
ORCID iD: 0000-0001-9165-2554
SPIN-код: 8924-3520

д-р мед. наук, профессор

Россия, 123098, Москва, ул. Живописная, д. 46

Серажутдин Абдуллаевич Абдуллаев

Государственный научный центр Российской Федерации — Федеральный медицинский биофизический центр имени А.И. Бурназяна

Email: saabdullaev@gmail.com
ORCID iD: 0000-0002-1396-0743
SPIN-код: 3485-8990

д-р биол. наук

Россия, 123098, Москва, ул. Живописная, д. 46

Список литературы

  1. Li X., Liu X.C., Ding X., et al. Resveratrol protects renal damages induced by periodontitis via preventing mitochondrial dysfunction in rats // Oral Dis. 2023. Vol. 29, N. 4. P. 1812–1825. doi: 10.1111/odi.14148
  2. Abate M., Festa A., Falco M., et al. Mitochondria as playmakers of apoptosis, autophagy and senescence // Semin Cell Dev Biol. 2020. Vol. 98. P. 139–153. doi: 10.1016/j.semcdb.2019.05.022
  3. Sangwung P., Petersen K.F., Shulman G.I., Knowles J.W. Mitochondrial dysfunction, insulin resistance, and potential genetic implications // Endocrinology. 2020. Vol. 161, N. 4. P. bqaa017. doi: 10.1210/endocr/bqaa017
  4. Gong W., Wang F., He Y., et al. Mesenchymal stem cell therapy for oral inflammatory diseases: research progress and future perspectives // Curr Stem Cell Res Ther. 2021. Vol. 16, N. 2. P. 165–174. doi: 10.2174/1574888X15666200726224132
  5. Vujovic S., Desnica J., Stevanovic M., et al. Oral health and oral health-related quality of life in patients with primary sjögren’s syndrome // Medicina (Kaunas). 2023. Vol. 59, N. 3. P. 473. doi: 10.3390/medicina59030473
  6. Jiang W., Wang Y., Cao Z., et al. The role of mitochondrial dysfunction in periodontitis: From mechanisms to therapeutic strategy // J Periodontal Res. 2023. Vol. 58, N. 5. P. 853–863. doi: 10.1111/jre.13152
  7. Seo B.J., Yoon S.H., Do J.T. Mitochondrial dynamics in stem cells and differentiation // Int J Mol Sci. 2018. Vol. 19. N. 12. P. 3893. doi: 10.3390/ijms19123893
  8. Chen X., Zhang Z., Li H., et al. Endogenous ethanol produced by intestinal bacteria induces mitochondrial dysfunction in non-alcoholic fatty liver disease // J Gastroenterol Hepatol. 2020. Vol. 35, N. 11. P. 2009–2019. doi: 10.1111/jgh.15027
  9. Forbes J.M., Thorburn D.R. Mitochondrial dysfunction in diabetic kidney disease // Nat Rev Nephrol. 2018. Vol. 14, N. 5. P. 291–312. doi: 10.1038/nrneph.2018.9
  10. Bhatti J.S., Bhatti G.K., Reddy P.H. Mitochondrial dysfunction and oxidative stress in metabolic disorders — A step towards mitochondria based therapeutic strategies // Biochim Biophys Acta Mol Basis Dis. 2017. Vol. 1863, N. 5. P. 1066–1077. doi: 10.1016/j.bbadis.2016.11.010
  11. West A.P. Mitochondrial dysfunction as a trigger of innate immune responses and inflammation // Toxicology. 2017. Vol. 391. P. 54–63. doi: 10.1016/j.tox.2017.07.016
  12. Dela Cruz C.S., Kang M.J. Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases // Mitochondrion. 2018. Vol. 41. P. 37–44. doi: 10.1016/j.mito.2017.12.001
  13. Wang L.W., Shen H., Nobre L., et al. Epstein-Barr-virus-induced one-carbon metabolism drives B cell transformation // Cell Metab. 2019. Vol. 30, N. 3. P. 539–555. doi: 10.1016/j.cmet.2019.06.003
  14. Xu L., Yan X., Zhao Y., et al. Macrophage polarization mediated by mitochondrial dysfunction induces adipose tissue inflammation in obesity // Int J Mol Sci. 2022. Vol. 23, N. 16. P. 9252. doi: 10.3390/ijms23169252
  15. Demmer R.T., Papapanou P.N. Epidemiologic patterns of chronic and aggressive periodontitis // Periodontol 2000. 2010. Vol. 53. P. 28–44. doi: 10.1111/j.1600-0757.2009.00326.x
  16. Papapanou P.N., Sanz M., Buduneli N., et al. Periodontitis: consensus report of workgroup 2 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions // J Periodontol. 2018. Vol. 89, Suppl. 1. P. S173–S182. doi: 10.1002/JPER.17-0721
  17. Laine M.L., Crielaard W., Loos B.G. Genetic susceptibility to periodontitis // Periodontol 2000. 2012. Vol. 58, N. 1. P. 37–68. doi: 10.1111/j.1600-0757.2011.00415.x
  18. Graziani F., Karapetsa D., Alonso B., Herrera D. Nonsurgical and surgical treatment of periodontitis: how many options for one disease? // Periodontol 2000. 2017. Vol. 75, N. 1. P. 152–188. doi: 10.1111/prd.12201
  19. Li L., Zhang Y.L., Liu X.Y., et al. Periodontitis exacerbates and promotes the progression of chronic kidney disease through oral flora, cytokines, and oxidative stress // Front Microbiol. 2021. Vol. 12. P. 656372. doi: 10.3389/fmicb.2021.656372
  20. Govindaraj P., Khan N.A., Gopalakrishna P., et al. Mitochondrial dysfunction and genetic heterogeneity in chronic periodontitis // Mitochondrion. 2011. Vol. 11, N. 3. P. 504–512. doi: 10.1016/j.mito.2011.01.009
  21. Tomokiyo A., Wada N., Maeda H. Periodontal ligament stem cells: regenerative potency in periodontium // Stem Cells Dev. 2019. Vol. 28, N. 15. P. 974–985. doi: 10.1089/scd.2019.0031
  22. Zhang Z., Deng M., Hao M., Tang J. Periodontal ligament stem cells in the periodontitis niche: inseparable interactions and mechanisms // J Leukoc Biol. 2021. Vol. 110, N. 3. P. 565–576. doi: 10.1002/JLB.4MR0421-750R
  23. Li J., Wang Z., Huang X., et al. Dynamic proteomic profiling of human periodontal ligament stem cells during osteogenic differentiation // Stem Cell Res Ther. 2021. Vol. 12, N. 1. P. 98. doi: 10.1186/s13287-020-02123-6
  24. Chen Y., Ji Y., Jin X., et al. Mitochondrial abnormalities are involved in periodontal ligament fibroblast apoptosis induced by oxidative stress // Biochem Biophys Res Commun. 2019. Vol. 509, N. 2. P. 483–490. doi: 10.1016/j.bbrc.2018.12.143
  25. Liu J., Zeng J., Wang X., et al. P53 mediates lipopolysaccharide-induced inflammation in human gingival fibroblasts // J Periodontol. 2018. Vol. 89, N. 9. P. 1142–1151. doi: 10.1002/JPER.18-0026
  26. Liu J., Wang X., Xue F., et al. Abnormal mitochondrial structure and function are retained in gingival tissues and human gingival fibroblasts from patients with chronic periodontitis // J Periodontal Res. 2022. Vol. 57, N. 1. P. 94–103. doi: 10.1111/jre.12941
  27. Liu J., Wang X., Zheng M., Luan Q. Oxidative stress in human gingival fibroblasts from periodontitis versus healthy counterparts // Oral Dis. 2023. Vol. 29, N. 3. P. 1214–1225. doi: 10.1111/odi.14103
  28. França L.F.C., Vasconcelos A.C.C.G., da Silva F.R.P., et al. Periodontitis changes renal structures by oxidative stress and lipid peroxidation // J Clin Periodontol. 2017. Vol. 44, N. 6. P. 568–576. doi: 10.1111/jcpe.12729
  29. Kose O., Kurt Bayrakdar S., Unver B., et al. Melatonin improves periodontitis-induced kidney damage by decreasing inflammatory stress and apoptosis in rats // J Periodontol. 2021. Vol. 92, N. 6. P. 22–34. doi: 10.1002/JPER.20-0434
  30. Sun X., Mao Y., Dai P., et al. Mitochondrial dysfunction is involved in the aggravation of periodontitis by diabetes // J Clin Periodontol. 2017. Vol. 44, N. 5. P. 463–471. doi: 10.1111/jcpe.12711
  31. Liu Q., Guo S., Huang Y., et al. Inhibition of trpa1 ameliorates periodontitis by reducing periodontal ligament cell oxidative stress and apoptosis via perk/eif2α/atf-4/chop signal pathway // Oxid Med Cell Longev. 2022. Vol. 2022. P. 4107915. doi: 10.1155/2022/4107915
  32. Gölz L., Memmert S., Rath-Deschner B. Hypoxia and p. gingivalis synergistically induce hif-1 and nf-κb activation in pdl cells and periodontal diseases // Mediators Inflamm. Vol. 2015. P. 438085. doi: 10.1155/2015/438085
  33. Zhao J., Faure L., Adameyko I., Sharpe P.T. Stem cell contributions to cementoblast differentiation in healthy periodontal ligament and periodontitis // Stem Cells. 2021. Vol. 39, N. 1. P. 92–102. doi: 10.1002/stem.3288
  34. Wang H., Wang X., Ma L., et al. PGC-1 alpha regulates mitochondrial biogenesis to ameliorate hypoxia-inhibited cementoblast mineralization // Ann N Y Acad Sci. 2022. Vol. 1516, N. 1. P. 300–311. doi: 10.1111/nyas.14872
  35. Zhao B., Zhang W., Xiong Y., et al. Effects of rutin on the oxidative stress, proliferation and osteogenic differentiation of periodontal ligament stem cells in LPS-induced inflammatory environment and the underlying mechanism // J Mol Histol. 2020. Vol. 51, N. 2. P. 161–171. doi: 10.1007/s10735-020-09866-9
  36. Iova G.M., Calniceanu H., Popa A., et al. The antioxidant effect of curcumin and rutin on oxidative stress biomarkers in experimentally induced periodontitis in hyperglycemic wistar rats // Molecules. 2021. Vol. 26, N. 5. P. 1332. doi: 10.3390/molecules26051332
  37. Cai W.J., Chen Y., Shi L.X., et al. Akt-gsk3β signaling pathway regulates mitochondrial dysfunction-associated OPA١ cleavage contributing to osteoblast apoptosis: preventative effects of hydroxytyrosol // Oxid Med Cell Longev. 2019. Vol. 2019. P. 4101738. doi: 10.1155/2019/4101738
  38. Zhang X., Jiang Y., Mao J., et al. Hydroxytyrosol prevents periodontitis-induced bone loss by regulating mitochondrial function and mitogen-activated protein kinase signaling of bone cells // Free Radic Biol Med. 2021. Vol. 176. P. 298–311. doi: 10.1016/j.freeradbiomed.2021.09.027
  39. Jiang C., Yang W., Wang C., et al. Methylene blue-mediated photodynamic therapy induces macrophage apoptosis via ros and reduces bone resorption in periodontitis // Oxid Med Cell Longev. 2019. Vol. 2019. P. 1529520. doi: 10.1155/2019/1529520
  40. Sui L., Wang J., Xiao Z., et al. ROS-scavenging nanomaterials to treat periodontitis // Front Chem. 2020. Vol. 8. P. 595530. doi: 10.3389/fchem.2020.595530
  41. Li X., Zhao Y., Peng H., et al. Robust intervention for oxidative stress-induced injury in periodontitis via controllably released nanoparticles that regulate the ROS-PINK1-Parkin pathway // Front Bioeng Biotechnol. 2022. Vol. 10. P. 1081977. doi: 10.3389/fbioe.2022.1081977
  42. Qiu X., Yu Y., Liu H., et al. Remodeling the periodontitis microenvironment for osteogenesis by using a reactive oxygen species-cleavable nanoplatform // Acta Biomater. 2021. Vol. 135. P. 593–605. doi: 10.1016/j.actbio.2021.08.009
  43. Zhai Q., Chen X., Fei D., et al. Nanorepairers rescue inflammation-induced mitochondrial dysfunction in mesenchymal stem cells // Adv Sci (Weinh). 2022. Vol. 9, N. 4. P. e2103839. doi: 10.1002/advs.202103839
  44. Nessa N., Kobara M., Toba H., et al. Febuxostat attenuates the progression of periodontitis in rats // Pharmacology. 2021. Vol. 106, N. 5-6. P. 294–304. doi: 10.1159/000513034
  45. Vaseenon S., Weekate K., Srisuwan T., et al. Observation of inflammation, oxidative stress, mitochondrial dynamics, and apoptosis in dental pulp following a diagnosis of irreversible pulpitis // Eur Endod J. 2023. Vol. 8, N. 2. P. 148–155. doi: 10.14744/eej.2022.74745
  46. Dogan Buzoglu H., Ozcan M., Bozdemir O., et al. Evaluation of oxidative stress cycle in healthy and inflamed dental pulp tissue: a laboratory investigation // Clin Oral Investig. 2023. Vol. 27, N. 10. P. 5913–5923. doi: 10.1007/s00784-023-05203-y
  47. Vengerfeldt V., Mändar R., Saag M., et al. Oxidative stress in patients with endodontic pathologies // J Pain Res. 2017. Vol. 10. P. 2031–2040. doi: 10.2147/JPR.S141366
  48. Pan H., Cheng L., Yang H., et al. Lysophosphatidic acid rescues human dental pulp cells from ischemia-induced apoptosis // J Endod. 2014. Vol. 40, N. 2. P. 217–222. doi: 10.1016/j.joen.2013.07.015
  49. Guo X., Chen J. The protective effects of saxagliptin against lipopolysaccharide (LPS)-induced inflammation and damage in human dental pulp cells // Artif Cells Nanomed Biotechnol. 2019. Vol. 47, N. 1. P. 1288–1294. doi: 10.1080/21691401.2019.1596925
  50. Zhang X., Wang C., Zhou Z., Zhang Q. The mitochondrial-endoplasmic reticulum co-transfer in dental pulp stromal cell promotes pulp injury repair // Cell Prolif. 2024. Vol. 57, N. 1. P. e13530. doi: 10.1111/cpr.13530
  51. Zhang Y.F., Zhou L., Mao H.Q., et al. Mitochondrial DNA leakage exacerbates odontoblast inflammation through gasdermin D-mediated pyroptosis // Cell Death Discov. 2021. Vol. 7, N. 1. P. 381. doi: 10.1038/s41420-021-00770-z
  52. Wang K., Zhou L., Mao H., et al. Intercellular mitochondrial transfer alleviates pyroptosis in dental pulp damage // Cell Prolif. 2023. Vol. 56, N. 9. P. e13442. doi: 10.1111/cpr.13442
  53. Mendenhall W.M., Suárez C., Genden E.M., et al. Parameters associated with mandibular osteoradionecrosis // Am J Clin Oncol. 2018. Vol. 41, N. 12. P. 1276–1280. doi: 10.1097/COC.0000000000000424
  54. Shuster A., Reiser V., Trejo L., et al. Comparison of the histopathological characteristics of osteomyelitis, medication-related osteonecrosis of the jaw, and osteoradionecrosis // Int J Oral Maxillofac Surg. 2019. Vol. 48, N. 1. P. 17–22. doi: 10.1016/j.ijom.2018.07.002
  55. Danielsson D., Brehwens K., Halle M., et al. Influence of genetic background and oxidative stress response on risk of mandibular osteoradionecrosis after radiotherapy of head and neck cancer // Head Neck. 2016. Vol. 38, N. 3. P. 387–393. doi: 10.1002/hed.23903
  56. Xu J., Zheng Z., Fang D., et al. Mesenchymal stromal cell-based treatment of jaw osteoradionecrosis in Swine // Cell Transplant. 2012. Vol. 21, N. 8. P. 1679–1686. doi: 10.3727/096368911X637434
  57. Wang C., Blough E., Dai X., et al. Protective effects of cerium oxide nanoparticles on mc3t3-e1 osteoblastic cells exposed to x-ray irradiation // Cell Physiol Biochem. 2016. Vol. 38, N. 4. P. 1510–1519. doi: 10.1159/000443092
  58. Li J., Yin P., Chen X., et al. Effect of α٢-macroglobulin in the early stage of jaw osteoradionecrosis // Int J Oncol. 2020. Vol. 57, N. 1. P. 213–222. doi: 10.3892/ijo.2020.5051

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2024

Ссылка на описание лицензии: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86295 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80635 от 15.03.2021 г
.