ALVEOLAR BONE REPLACEMENT WITH NON-INDUCING BIOMATERIALS BASED ON THE INTRAMEMBRANOUS OSSIFICATION PATTERN: histomorphological study



如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Rationale. The lack of knowledge about the nature of intramembranous ossification pattern during the replacement of the alveolar bone defects, in contrast to the more studied process of enchondral ossification, explains the contradictory interpretations of treatment outcomes and assessments of the effectiveness of reconstructive techniques in dentistry and maxillofacial surgery.

The aim of the experiment was to study the early replacement of extensive defects of the alveolar bone in the context of intramembranous ossification pattern using non-inducing biomaterials.

Materials and methods. The KubSMU’s Research Laboratory was used to conduct an experiment involving on three sexually mature & healthy minipigs. Acellular dermal matrix and granules of natural osteoconductive biomaterial were introduced into the extensive alveolar bone defects. On the 120th day, mandibular bones were isolated for histolomorphological analysis. Hematoxylin and eosin, Van Gieson’s picrofuxin and Masson’s trichrome staining were used. The randomization method was not applied.

The results and discussion. Replacement of defects of the extensive alveolar bone defects occurs due to vascularization de novo by triggering the process of local hematopoiesis. In the venous link of the regional vascular bed, sinusoidal capillaries with hematopoietic cells maturing inside are formed, some of which migrate into the surrounding tissue through discontinuous walls. Immature progenitor cells actively proliferate and differentiate, mainly, into segmented granulocytes, which participate in dynamic processes of intercellular and cell-matrix interactions with the formation of transitional intermediate cellular forms. As a result, reticular connective tissue is formed – a niche of bone marrow structures, osteoid is produced with the appearance of reticulofibrous bone beams. The effect of non-inducing matrix and granular biomaterials on vasculogenesis was analized.

Conclusion. The results of the experimental study reveal the existence of a direct relationship between the initiation of hematopoiesis in the sinusoidal capillaries of the alveolar defect zone and the events of intramedullary osteohistogenesis. The active and universal role of granulocytes in the normal healing and asynergy of bone growth was revealed in the presence of residual granules of osteoconductive biomaterials.

全文:

受限制的访问

作者简介

M. Perova

Kuban State Medical University

Email: mperova2013@yandex.ru
ORCID iD: 0000-0001-6974-6407
SPIN 代码: 5552-7988

Associate Professor, Professor of the Department of Surgical Dentistry and Maxillofacial Surgery

俄罗斯联邦

Artem Ananich

Email: ananicha.ksma@mail.ru
ORCID iD: 0000-0002-5166-2894
SPIN 代码: 7324-7491

Aleksandr Verevkin,

Email: vilehand@bk.ru
ORCID iD: 0000-0002-4159-2618
SPIN 代码: 8264-4990

Igor Sevostyanov

Email: drsevostyanovia@gmail.com
ORCID iD: 0000-0002-8472-7279
SPIN 代码: 9174-3102

Karina Melkonian

Email: iyadalayoub@yahoo.com
ORCID iD: 0000-0003-2451-6813

Inna Samoxvalova

Email: samoxvalovai@mail.ru
ORCID iD: 0000-0003-0360-8882

Iyad Alayoub

编辑信件的主要联系方式.
Email: iyadalayoub@yahoo.com
ORCID iD: 0009-0007-3888-8024

参考

  1. Modern possibilities and prospects for replacing alveolar jaw defects and oral cavity integumentary tissues: a literature review / A.Yu. Ananich, M.D. Perova, I.A. Sevostyanov [et al.] // Russian Dental Journal. - 2024. - Vol. 28, No. 3. - P. 271–285. - DOI: https://doi.org/10.17816/dent623472.
  2. Bozo, I.Ya. Development and application of gene-activated osteoplastic material for replacing bone defects: diss. ... Cand. of Medicine. - Moscow: FGBOU VO MGMSU named after A.I. Evdokimov, 2017.
  3. Scientometric analysis of dissertations on dentistry in the Russian Federation / I. K. Soldatov, L. N. Zhuravleva, N. V. Tegza [et al.] // Russian Dental Journal. - 2023. - Vol. 27, No. 6. - P. 571-580. - doi: 10.17816/dent624942. - EDN QINWXB.
  4. Regenerative osteogenesis at the tissue–bone plastic material border / E.V. Presnyakov, H.R. Kurbonov, I.P. Sorochanu [et al.] // Morphology. - 2023. - Vol. 161, No. 4. - P. 33–42. - DOI: https://doi.org/10.17816/morph.629963.
  5. Biphasic mineralized collagen-based composite scaffold for cranial bone regeneration in developing sheep / J. Zheng, Z. Zhao, Y. Yang [et al.] // Regen/ Biomater. - 2022 Jan 18;9:rbac004. - doi: 10.1093/rb/rbac004.
  6. Evaluation of the postoperative course in patients after removal of dystopic third molars / V. V. Balin, V. V. Dvoryanchikov, V. A. Zheleznyak [et al.] // Russian Dental Journal. – doi: 10.17816/dent634561. – EDN UOXPET.
  7. The role of angiogenesis in implant dentistry part II: The effect of bone-grafting and barrier membrane materials on angiogenesis / М.А. Saghiri, А. Asatourian, F. Garcia-Godoy [et al.] // Med. Oral Patol. Oral Cir. Bucal. – 2016. - № 21. – Р. e526–e537. doi: 10.4317/medoral.21200.
  8. Volotovsky, A.I. Development and growth of the skull bones in the pre- and early postnatal periods of ontogenesis / A.I. Volotovsky, T.M. Studenikina // Military Medicine. - 2022. - No. 1. - P. 66-73. - DOI: https://doi.org/10.51922/2074-5044.2022.1.66.
  9. Rugal, V.I. Formation of the stromal microenvironment and the establishment of hematopoiesis in fetal spongy bone / V.I. Rugal, N.Yu. Semenova, S.S. Bessmeltsev // Bulletin of Hematology. - 2019. - No. 4. - P. 14-18.
  10. Kamilov, F.Kh. Cellular and molecular mechanisms of bone tissue remodeling and its regulation / F.Kh. Kamilov, E.R. Farshatova, D.A. Enikeev // Fundamental research. - 2014. - No. 7-4. - P.836-842. - URL: https://fundamental-research.ru/ru/article/view?id=34992 (date of access: 11.02.2025).
  11. Marks, S.C. Structure and development of the skeleton. Principles of bone biology / S.C. Marks, P.R. Odgren [et al.] // San Diego: Academic Press. - 2002. – Р. 3–16.
  12. Angiogenesis is uncoupled from osteogenesis during calvarial bone regeneration / M.G. Bixel, К.К. Sivaraj, М. Timmen [et al.] // Nature Communications. – 2024. - № 15. – Р. 4575. - https://doi.org/10.1038/s41467-024-48579-5.
  13. Strategies for Bone Regeneration: From Graft to Tissue Engineering / G. Battafarano, М. Rossi, V. De Martino [et al.] // Int. J. Mol. Sci. – 2021. - № 22(3). – Р. 1128. - doi: 10.3390/ijms22031128.
  14. Volkov, A.V. Morphology of reparative osteogenesis and osseointegration in maxillofacial surgery: author's abstract ... doctor of medical sciences. - M .: FGAOU VO "RUDN", 2019.
  15. Agazade, A.R. Histomorphometric and quantitative histochemical analysis of the peri-implant zone in patients with different bone mineral density during dental implantation / A.R. Agazade, I.A. Gasanov, R.R. Agazade // Bulletin of the Russian Academy of Medical Sciences. - 2014. - No. 3-4. - P. 19-23.
  16. Use of Raman spectroscopy to study the mineralization of bone regenerates / S.A. Minaeva A.V. Vasiliev, T.B. Bukharova [et al.] // Clinical and experimental morphology. - 2012. - No. 4. - P. 53-56.
  17. Bykov, V.L. Cytology and general histology (functional morphology of human cells and tissues). - St. Petersburg: SOTIS, 1998. - 520 p.
  18. Embryonic development of bone and regulation of intramembranous and endochondral bone formation / А.С. Karaplis, J.P. Bilezikian, L.G. Raisz [et al.] // Principles of Bone Biology. – 2008. - Vol. 1. - 3rd ed. - Р. 53–84. - https://doi.org/10.1016/B978-0-12-373884-4.00025-2
  19. Percival, C.J. Angiogenesis and intramembranous osteogenesis / CJ. Percival, J.T. Richtsmeier // Dev Dyn.- 2013. - № 242(8). – Р. 909-22. - doi: 10.1002/dvdy.23992.
  20. Differential bone and vessel type formation at superior and dura periosteum during cranial bone defect repair / Y. Zhai, Z., Zhou, X. Xing [et al.] // Bone Res. – 2025. - № 13. – Р. 8. -https://doi.org/10.1038/s41413-024-00379-9.
  21. Vasiliev A.V. Characteristics of neoosteogenesis in a model of critical defect of rat parietal bones using traditional and three-dimensional morphometry / A. V. Vasiliev, A. V. Volkov, D. V. Goldstein // Genes and cells. - 2014. - No. 4 (9). - P. 121-127.
  22. Gosain, A. K. et al. Osteogenesis in calvarial defects: contribution of the dura, the pericranium and the surrounding bone in adult versus infant animals / А.К. Gosain [et al.] // Plast. Reconstr. Surg. – 2003. - № 112. – Р. 515–527. - doi: 10.1097/01.PRS.0000070728.56716.51
  23. McKee, M.D. Mineral tessellation in bone and the stenciling principle for extracellular matrix mineralization / M.D. McKee, D.J. Buss, N. Reznikov // J. Struct. Biol. – 2022. - № 214(1). – Р. 107823. - doi: 10.1016/j.jsb.2021.107823.
  24. The miniature pig: A useful large animal model for dental and orofacial research / S.L. Wang, Y. Liu, D.J. Fang [et al.] // Oral Dis. – 2007. - № 13. – Р. 530–537. - doi: 10.1111/j.1601-0825.2006.01337.x.
  25. Мешер, Э.Л. Гистология по Жункейре: Учебное пособие / Э. Л. Мешер; пер с англ. под ред. В. Л. Быкова. – Москва: ГЭОТАР-Медиа, 2022. – 624 с.: ил. – doi: 10.33029/9704-6981-1- BNT – 2022-1-7-624.
  26. Omatsu, Y. Cellular niches for hematopoietic stem cells in bone marrow under normal and malignant conditions // Inflamm Regener. – 2023. - № 43. – Р. 15. -https://doi.org/10.1186/s41232-023-00267-5.
  27. Heterogeneity in neutrophil microparticles reveals distinct proteome and functional properties / J. Dalli, Т. Montero-Melendez, L.V. Norling [et al.] // Mol Cell Proteomics. – 2013. - № 12(8). – Р. 2205-19. - doi: 10.1074/mcp.M113.028589.
  28. A New Look at Neutrophilic Granulocytes: Rethinking Old Dogmas. Part 1 / I.V. Nesterova, N.V. Kolesnikova, G.A. Chudilova [et al.] // Infection and Immunity. - 2017. - Vol. 7, No. 3. - P. 219–230. - doi: 10.15789/2220-7619-2017-3-219-230.
  29. Results of Autotransplantation of the Vascular Cell Fraction in Surgical Treatment of Periodontitis and Features of Tissue Regenerate Formation / M.D. Perova, M.G. Shubich, V.A. Kozlov [et al.] // Institute of Dentistry. - St. Petersburg, 2010 - No. 2 (42) - P. 62–64.
  30. Perova M.D. Discovery of neutrophil extracellular traps begins a new milestone in the study of neutrophil morphogenesis and functions / M.D. Perova, M.G. Shubich // Morphology. - 2011. - Vol. 139, No. 3 - P. 89-96.
  31. Ivanov, A.N. Structural features of endothelial cells of mammals and humans / A.N. Ivanov, I.O. Bugaeva // Tsitology. - 2016. - Vol. 58, No. 9. - P. 657 - 665.
  32. The Role of Endothelial Progenitor Cells in Postnatal Vasculogenesis: Implications for Therapeutic Neovascularization and Wound Healing / S. Balaji, А. King, Т.М. Crombleholme [et al.] // Adv Wound Care (New Rochelle). – 2013. - № 2(6). – Р. 283-295. - doi: 10.1089/wound.2012.0398.
  33. Morrison S.J. The bone marrow niche for haematopoietic stem cells / S.J. Morrison, D.T. Scadden // Nature. – 2014. - № 16. – Р. 505(7483):327-34. - doi: 10.1038/nature12984.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector,



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86295 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80635 от 15.03.2021 г
.