MESOPROTEROZOIC BIMODAL MAGMATISM OF THE ULUTAU TERRANE OF CENTRAL KAZAKHSTAN

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the southern part of the Ulutau terrane (Central Kazakhstan), a complex of volcanogenic rocks of basalt-rhyolite composition of the Zhiide series has been studied. Based on the U–Pb (SIMS) geochronological study of accessory zircons, an estimate of the age of rhyolites was obtained for the first time – 1338 ± 5 million years, which corresponds to the first half of the Ectasia period of the Mesoproterozoic. The features of the composition of the basic and acidic effusions indicate their formation in the context of continental rifting caused by the activity of the mantle plume.

About the authors

A. A. Tretyakov

Geological Institute, Russian Academy of Sciences

Author for correspondence.
Email: and8486@yandex.ru
Russian, Moscow

K. E. Degtyarev

Geological Institute, Russian Academy of Sciences

Email: and8486@yandex.ru
Russian, Moscow

N. A. Kanygina

Geological Institute, Russian Academy of Sciences

Email: and8486@yandex.ru
Russian, Moscow

B. V. Fedorov

Sergo Ordzhonikidze Russian State University for Geological Prospecting

Email: and8486@yandex.ru
Russian, Moscow

References

  1. Degtyarev K., Yakubchuk A., Tretyakov A., Kotov A., Kovach V. Precambrian geology of the Kazakh Uplands and Tien Shan: An overview // Gondwana Research. 2017. V. 47. P. 44–75.
  2. Kanygina N.A., Tretyakov A.A., Degtyarev K.E., Ko-vach V.P., Skuzovatov S.Y., Pang K.-N., Wang K.-L., Lee H.-Y. Late mesoproterozoic–early neoproterozoic quartzite–schist sequences of the Aktau–Mointy terrane (Central Kazakhstan): provenance, crustal evolution, and implications for paleotectonic reconstruction // Precambrian Research. 2021. V. 354. P. 106040.
  3. Kovach V., Degtyarev K., Tretyakov A., Kotov A., Tolmacheva E., Wang K-L., Chung S-L., Jahn B-M. Sources and provenance of the Neoproterozoic placer deposits of the Northern Kazakhstan: Implication for continental growth of the western Central Asian Orogenic Belt // Gondwana Research. 2017. V. 47. P. 28–43.
  4. Третьяков А.А., Дегтярев К.Е., Каныгина Н.А., Данукалов Н.К. Поздненеопротерозойский возраст дифференцированных вулканогенных комплексов Улутауского массива (Центральный Казахстан): результаты U–Th–Pb (SIMS)-геохронологических исследований // Доклады Российской академии наук. Науки о Земле. 2020. Т. 494. № 1. С. 9–13.
  5. Третьяков А.А., Дегтярев К.Е., Данукалов Н.К., Каныгина Н.А. Неопротерозойский возраст железорудной вулканогенно-осадочной серии Улутауского террейна (Центральный Казахстан) // Доклады Российской академии наук. Науки о Земле. 2022. Т. 502. № 2. С. 49–55.
  6. Филатова Л.И. Стратиграфия и историко-геологический (формационный) анализ метаморфических толщ докембрия Центрального Казахстана. М.: Недра, 1983. 160 с.
  7. Whilliams I.S. U-Th-Pb geochronology by ion microprobe // Reviews in Economic Geology, 1998. V. 7. P. 1–35.
  8. Ludwig K.R. SQUID 1.00, A User’s Manual // Berkeley Geochronology Center Special Publication. 2000. No. 2. 2455 Ridge Road, Berkeley. CA 94709, USA. 17 p.
  9. Ludwig K.R. ISOPLOT 3.00. A user’s manual // Berkeley Geochronology Center Special Publication. 2003. № 4. 2455 RidgeRoad, Berkeley. CA 94709. USA. 70 p.
  10. Cohen K.M., Finney S.C., Gibbard P.L., Fan J.X. The ICS International Chronostratigraphic Chart // Episodes. 2013 (updated 02. 2022). V. 36. № 3. P. 199–204.
  11. Sun S.S., McDonough W.F. Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes // Magmatism in the ocean basins / Eds. A.D. Saunders, M.J. Norry. Spec. Publ. 42. Geol. Soc. London, 1989. P. 313–345.
  12. Whalen J.B., Currie K.L., Chappell B.W. A-type granites-geochemical characteristics, discrimination and petrogenesis // Contrib. Mineral. Petrol. 1987. V. 95. P. 407–419.
  13. Pearce J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust // Lithos. 2008. V. 100. P. 14–48.
  14. Pearce J.A., Harris N.W., Tindle A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks // Journal of Petrology. 1984. V. 25. P. 956–983.
  15. Condie K.C. High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? // Lithos. 2005. V. 79. P. 491–504.
  16. Evans D.A., Mitchell R.N. Assembly and breakup of the core of Paleoproterozoic–Mesoproterozoic supercontinent Nuna // Geology. 2011. V. 39. P. 443–446.
  17. Pisarevsky S.A., Elming S.-A., Pesonen L.J., Li Z.-X. Mesoproterozoic paleogeography: Supercontinent and beyond // Precambrian Research. 2014. V. 244. P. 207–225.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (816KB)
4.

Download (239KB)
5.

Download (412KB)

Copyright (c) 2023 А.А. Третьяков, К.Е. Дегтярев, Н.А. Каныгина, Б.В. Федоров