Applicability of the MARTINI coarse-grained force field for simulations of protein oligomers in crystallization solution

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The molecular dynamics of two types of lysozyme octamers was simulated under crystallization conditions in the MARTINI coarse-grained force field. Comparative analysis of the obtained results with the simulation data for the same octamers modelled in the all-atom field Amber99sb-ildn showed that octamer “A” demonstrates greater stability compared to octamer “B” in both force fields. Thus, the results of molecular dynamics simulations of octamers using both force fields are consistent. Despite several differences in the behavior of the protein in different fields, they do not affect the validity of the data obtained using MARTINI. This confirms the applicability of the MARTINI force field for studying crystallization solutions of proteins.

Full Text

Restricted Access

About the authors

Y. V. Kordonskaya

National Research Centre "Kurchatov Institute"

Author for correspondence.
Email: yukord@mail.ru
Russian Federation, 123182 Moscow

V. I. Timofeev

National Research Centre "Kurchatov Institute"; Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: yukord@mail.ru
Russian Federation, 123182 Moscow; Moscow

M. A. Marchenkova

National Research Centre "Kurchatov Institute"; Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: yukord@mail.ru
Russian Federation, 123182 Moscow; Moscow

Y. V. Pisarevsky

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: yukord@mail.ru
Russian Federation, Moscow

Y. A. Dyakova

National Research Centre "Kurchatov Institute"

Email: yukord@mail.ru
Russian Federation, 123182 Moscow

M. V. Kovalchuk

National Research Centre "Kurchatov Institute"; Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: yukord@mail.ru
Russian Federation, 123182 Moscow; Moscow

References

  1. Kovalchuk M.V., Blagov A.E., Dyakova Y.A. et al. // Cryst. Growth Des. 2016. V. 16. № 4. P. 1792. https://doi.org/10.1021/acs.cgd.5b01662
  2. Marchenkova M.A., Volkov V.V., Blagov A.E. et al. // Crystallography Reports. 2016. V. 61. № 1. P. 5. https://doi.org/10.1134/S1063774516010144
  3. Boikova A.S., D’yakova Y.A., Il’ina K.B. et al. // Crystallography Reports. 2018. V. 63. № 6. P. 865. https://doi.org/10.1134/S1063774518060068
  4. Kovalchuk M.V., Boikova A.S., Dyakova Y.A. et al. // J. Biomol. Struct. Dyn. 2019. V. 37. № 12. P. 3058. https://doi.org/10.1080/07391102.2018.1507839.
  5. Marchenkova M.A., Konarev P.V., Rakitina T.V. et al. // J. Biomol Struct. Dyn. V. 38. № 10. P. 2939. https://doi.org/10.1080/07391102.2019.1649195
  6. Marchenkova M.A., Boikova A.S., Ilina K.B. et al. // Acta Naturae. 2023. V. 15. № 1. P. 58. https://doi.org/10.32607/ACTANATURAE.11815
  7. Kordonskaya Y.V., Timofeev V.I., Dyakova Y.A. et al. // Crystallography Reports. 2018. V. 63. № 6. P. 947. https://doi.org/10.1134/S1063774518060196
  8. Kordonskaya Y.V., Timofeev V.I., Marchenkova M.A., Konarev P.V. // Crystals. 2022. V. 12. № 4. P. 484. https://www.mdpi.com/2073-4352/12/4/484
  9. Kordonskaya Y.V., Timofeev V.I., Dyakova Y.A. et al. // Mend. Commun. 2023. V. 33. № 2. P. 225. https://doi.org/10.1016/J.MENCOM.2023.02.024
  10. Cerutti D.S., Le Trong I., Stenkamp R.E., Lybrand T.P. // Biochemistry. 2008. V. 47. № 46. P. 12065. https://doi.org/10.1021/bi800894u
  11. Cerutti D.S., Le Trong I., Stenkamp R.E., Lybrand T.P. // J. Phys. Chem. B. 2009. V. 113. № 19. P. 6971. https://pubs.acs.org/doi/full/10.1021/jp9010372
  12. Cerutti D.S., Freddolino P.L., Duke R.E., Case D.A. // J. Phys. Chem. B. 2010. V. 114. № 40. P. 12811. https://doi.org/10.1021/jp105813j
  13. Taudt A., Arnold A., Pleiss J. // Phys. Rev. E. 2015. V. 91. № 3. P. 033311. https://journals.aps.org/pre/abstract/10.1103/PhysRevE.91.033311
  14. Meinhold L., Merzel F., Smith J.C. // Phys. Rev. Lett. 2007. V. 99. № 13. P. 138101. https://doi.org/10.1103/PhysRevLett.99.138101
  15. Marrink S.J., Periole X., Tieleman D.P., De Vries A.H. // Phys. Chem. Chem. Phys. 2010. V. 12. № 9. P. 225. https://doi.org/10.1039/B915293H
  16. Marrink S.J., Risselada H.J., Yefimov S. et al. // J. Phys. Chem. B. 2007. V. 111. № 27. P. 7812. https://pubs.acs.org/doi/full/10.1021/jp071097f
  17. Monticelli L., Kandasamy S.K., Periole X. et al // J. Chem. Theory Comput. 2008. V. 4. № 5. P. 819. https://pubs.acs.org/doi/abs/10.1021/ct700324x
  18. Marrink S.J., Monticelli L., Melo M.N. et al. // Wiley Interdiscip Rev. Comput. Mol. Sci. 2022. V. 13. № 1. P. e1620. https://onlinelibrary.wiley.com/doi/full/10.1002/wcms.1620
  19. Kroon P.C., Grünewald F., Barnoud J. et al. // 2022. https://arxiv.org/abs/2212.01191v3
  20. Souza P.C.T., Alessandri R., Barnoud J. et al. // Nature Methods. 2021. V. 18. № 4. P. 382. https://www.nature.com/articles/s41592-021-01098-3
  21. Van Der Spoel D., Lindahl E., Hess B. et al. // J. Comput. Chem. 2005. V. 26. № 16. P. 1701. https://doi.org/10.1002/jcc.20291
  22. Wassenaar T.A., Ingólfsson H.I., Böckmann R.A. et al. // J. Chem. Theory Comput. 2015. V. 11. № 5. P. 2144. https://pubs.acs.org/doi/abs/10.1021/acs.jctc.5b00209
  23. Bernetti M., Bussi G. // J. Chem. Phys. 2020. V. 153. № 11. Р. 114107. https://doi.org/10.1063/5.0020514
  24. Berendsen H.J.C., Postma J.P.M., Van Gunsteren W.F. et al. // J. Chem. Phys. 1984. V. 81. № 8. P. 3684. https://doi.org/10.1063/1.448118
  25. Parrinello M., Rahman A. // J. Chem. Phys. 1982. V. 76. № 5. P. 2662. https://doi.org/10.1063/1.443248
  26. Van Gunsteren W.F., Berendsen H.J.C. // Mol. Simul. 1988. V. 1. № 3. P. 173. https://doi.org/10.1080/08927028808080941
  27. Hünenberger P.H., Van Gunsteren W.F. // J. Chem. Phys. 1998. V. 108. № 15. P. 6117. https://doi.org/10.1063/1.476022
  28. Hess B., Bekker H., Berendsen H.J.C., Fraaije J.G.E.M. // J. Comput. Chem. 1997. V. 18. P. 1463. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The correspondence of the atomistic and coarse-grained (in the MARTINI field) structure of the amino acid residues of arginine (a) and tryptophan (b). For clarity, the hydrogen atoms are hidden. Translucent spheres show the particles in MARTINI: BB (Backbone) belong to the main chain of the protein, and SC (Side Chain) – to the side.

Download (154KB)
3. Fig. 2. The structure of octamers A (left) and B (right) at the beginning (top) and at the end (bottom) of modeling in full-atomic (Amber99sb-ildn) and coarse-grained (MARTINI) force fields. In Amber99sb-ildn, one sphere corresponds to one atom, in MARTINI – to a group of atoms. One molecule contains 1022 atoms in Amber99sb-ildnand 304 grains in MARTINI. The pairwise RMSD between the initial and final structure are shown below. It is clearly shown that in both fields, octamer B decays, while octamer A remains more stable.

Download (656KB)
4. Fig. 3. Stability of octamers A and B in crystallization solution during molecular dynamics modeled in different force fields: the ”full-atomic" Amber99sb-ildnfield (left) and the coarse-grained MARTINI field (right). Stability was assessed using the characteristics of RMSF (a, b), RMSD (c, d) and Rg (e, e). In all graphs (a–e), octamer A is more stable than octamer B, which indicates the consistency of the simulation results in the Amber99sb-ildn and MARTINI force fields.

Download (488KB)

Copyright (c) 2024 Russian Academy of Sciences