“Strange behaviours” of parents at the nest in an avian prey species as a potential source of bias when studying nest predation and signs left by different predators

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In most passerines, parent birds clean their nests. Egg shells, fecal sacs, and dead nestlings, as well as foreign objects, for example, leaf and twig debris, as they appear, are usually removed from nests in one or another way. If, for one reason or another (nest predation, inclement weather, starvation etc.), all offspring die, parents abandon the nest with egg or/and nestling remains. Finding one or another nest empty and intact before the earliest possible fledging date, observers who monitor nests usually attribute the failure to predation. Automated cameras placed at 148 Fieldfare (Turdus pilaris) nests in 2016–2020 to study nest predation in Moscow City, Russia documented two cases of sanitation (by females) of entire and almost entire (all but one dead nestling) broods of dead nestlings that had died due to inclement weather. This information is one of the very few, probably the second, and for Eurasian species probably the first published evidence of such a behaviour in passerines. In addition, eight cases of removal by parents of the traces of predation were recorded immediately or soon after (within 0.1– 4.2 hours) complete depredation of nest contents: eating at the nest or the removal by parents of egg shells, remains of egg contents, as well as feathers lost by parents as a result of predator attacks, an active or passive elimination of disturbances in the lining of the nest cup. Complete or partial “concealment of evidence” by parents occurred in about every four depredated nests, including those in which predators did not leave any “evidence”. The removal by parents of all evidence of clutch/brood failure that had happened for any reason, not only due to predation, was recorded in approximately every third nest from which all offspring disappeared without a trace before the earliest possible fledging date. These behaviours of parents could possibly be considered as bringing them to the point of absurdity, “by inertia”, a sequence of stereotypic actions to maintain cleanliness, as well as the lining of the nest. An observation was also made of a female adding fresh lining to the nest cup on top of a dead, ca. 7-day old nestling from the failed previous brood and then laying a replacement clutch. All these cases are interesting not only because they provide new information on parental behaviour in the Fieldfare. These “strange behaviours” are also a potential source of bias when studying nest predation and signs left by different predatory species with traditional methods for monitoring the nests, with neither video monitoring nor automatic photography. Furthermore, it must not be excluded that, under some circumstances, even estimates of the relative frequency of different causes of nest failure can be biased due to these behavioural curiosities. That is why it is important to know how many and how frequently do bird species show similar behaviours.

Full Text

Restricted Access

About the authors

N. S. Morozov

Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Author for correspondence.
Email: morozovn33@gmail.com
Russian Federation, Moscow, 119071

References

  1. Бережная Т. В., Голубев А. Д., Паршина Л. Н., 2017. Аномальные гидрометеорологические явления на территории Российской Федерации в мае 2017 г. // Метеорология и гидрология. № 8. С. 131–143.
  2. Бережная Т. В., Голубев А. Д., Паршина Л. Н., 2020. Аномальные гидрометеорологические явления на территории Российской Федерации в мае 2020 г. // Метеорология и гидрология. № 8. С. 129–137.
  3. Благосклонов К. Н., 1949. Охрана и привлечение птиц полезных в сельском хозяйстве. М.: Учпедгиз. 224 с.
  4. Дольник В. Р., 1960. О врожденных компонентах инстинктивной деятельности птиц в гнездовой период // Вестник Ленинградского ун-та. № 21. Серия биологии. Вып. 4. С. 101–112.
  5. Зеленская Л. А., 2019. Экология урбанизированной популяции тихоокеанской чайки (Larus schistisagus) в сравнении с естественными колониями. 1. Особенности размещения гнезд и продуктивность // Зоологический журнал. Т. 98. № 4. С. 420–436.
  6. Калякин М. В., Волцит О. В., Гроот Куркамп Х. (ред.-сост.), 2014. Атлас птиц города Москвы. М.: Фитон XXI. 332 с.
  7. Карташев Н. Н., 1949. Птичьи базары Восточного Мурмана // Охрана природы. Сборник 7. М.: Всероссийское общество охраны природы. С. 115–122.
  8. Кривошеина Н. П., Морозов Н. С., Худяков В. В., 2017. К биологии паразита птиц Neottiophilum praeustum (Meigen 1826) (Diptera, Neottiophilidae) // Зоологический журнал. Т. 96. № 8. С. 937–942.
  9. Кривошеина Н. П., Морозов Н. С., Худяков В. В., 2018. Двукрылые насекомые (Diptera) в гнездах рябинника (Turdus pilaris) на территории Москвы // Зоологический журнал. Т. 97. № 4. С. 408–421.
  10. Локощенко М. А., 2018. Снежный покров // Эколого-климатические характеристики атмосферы Москвы в 2017 г. по данным Метеорологической обсерватории МГУ имени М. В. Ломоносова / Ред. М. А. Локощенко. М.: МАКС Пресс. С. 47–59.
  11. Мальчевский А. С., 1959. Гнездовая жизнь певчих птиц. Размножение и постэмбриональное развитие лесных воробьиных птиц европейской части СССР. Л.: Изд-во Ленинградского ун-та. 281 с.
  12. Мельников Ю. И., 2012. Адаптация околоводных и водоплавающих птиц к гнездованию в условиях динамичного гидрологического режима: достройка гнезд по мере подъема уровня воды // Бюллетень Московского общества испытателей природы. Отдел биологический. Т. 117. № 2. С. 3–15.
  13. Морозов Н. С., 2022. Роль хищников в формировании городских популяций птиц. 3. Хищники в российских городах – препятствие для синурбизации видов-жертв? // Зоологический журнал. Т. 101. № 1. С. 37–66.
  14. Морозов Н. С., Худяков В. В., 2016. Дрозд-рябинник (Turdus pilaris) в Москве в 2015 г.: сроки гнездования и последствия двух аномальных метеорологических явлений // Шиловцева О. А. (ред.). Эколого-климатические характеристики атмосферы в 2015 г. по данным метеорологической обсерватории МГУ. М.: МАКС Пресс. С. 220–268.
  15. Морозов Н. С., Худяков В. В., Панфилова И. М., 2015. Рябинник (Turdus pilaris) в большом городе: особенности размножения и репродуктивные потери из-за хищников // XIV Международная орнитологическая конференция Северной Евразии (Алматы, 18–24 августа 2015 г.). I. Тезисы. Алматы: Мензбировское орнитологическое общество. С. 342–343.
  16. Нумеров А. Д., 2003. Межвидовой и внутривидовой гнездовой паразитизм у птиц. Воронеж: ФГУП ИПФ Воронеж. 517 с.
  17. Паршина Л. Н., 2020. Погода на территории Российской Федерации в мае 2020 г. // Метеорология и гидрология. № 8. С. 123–129.
  18. Сатина Н. В., 2017. Погода на территории Российской Федерации в мае 2017 г. // Метеорология и гидрология. № 8. С. 126–131.
  19. Строков В. В., 1968. Выбрасывание птенцов из гнезд взрослыми птицами // Зоологический журнал. Т. 47. № 6. С. 951–952.
  20. Шутова Е. В., 1997. Влияние паразитирования каллифорид Calliphoridae (Diptera) на выживание птенцов воробьиных птиц // Русский орнитологический журнал. Экспресс-выпуск 22. С. 8–12.
  21. Ackerman J. T., Eadie J. Mc A., Yarris G. S., Loughman D. L., McLandress M.R., 2003. Cues for investment: nest desertion in response to partial clutch depredation in dabbling ducks // Animal Behaviour. V. 66. № 5. P. 871–883.
  22. Arcese P., Smith J. N.M., Hatch M. I., 1996. Nest predation by cowbirds and its consequences for passerine demography // Proceedings of the National Academy of Science of the USA. V. 93. № 10. P. 4608–4611.
  23. Arheimer O., Svensson S., 2008. Breeding performance of the Fieldfare Turdus pilaris in the subalpine birch zone in southern Lapland: a 20 year study // Ornis Svecica. V. 18. № 1. P. 17–44.
  24. Arnold T. W., 1992. The adaptive significance of eggshell removal by nesting birds: testing the egg-capping hypothesis // Condor. V. 94. № 2. P. 547–548.
  25. Berger A. J., 1953. Reaction of female Horned Larks to banded young // Bird Banding. V. 24. № 1. P. 19–20.
  26. Blair R. H., Tucker B. W., 1941. Nest sanitation // British Birds. V. 34. P. 206–215, 226–235, 250–255.
  27. Boal C. W., Mannan R. W., 1999. Comparative breeding ecology of Cooper’s Hawks in urban and exurban areas of southeastern Arizona // Journal of Wildlife Management. V. 63. № 1. P. 77–84.
  28. Boersma P. D., Rebstock G. A., 2014. Climate change increases reproductive failure in Magellanic Penguins // PLoS ONE 9 (1): e85602.
  29. Bordjan D., Tome D., 2014. Rain may have more influence than temperature on nest abandonment in the Great Tit Parus major // Ardea. V. 102. № 1. P. 79–86.
  30. Conrey R. Y., Skagen S. K., Yackel Adams A. A., Panjabi A. O., 2016. Extremes of heat, drought and precipitation depress reproductive performance in shortgrass prairie passerines // Ibis. V. 158. № 3. P. 614–629.
  31. Crick H. Q.P., Baillie S. R., Leech D. I., 2003. The UK Nest Record Scheme: its value for science and conservation // Bird Study. V. 50. № 3. P. 254–270.
  32. Davidson-Onsgard A., Jones T. M., Savides K., Kaiser S. A., 2024. Description of a Black-throated Blue Warbler (Setophaga caerulescens) incubating an empty nest and review of this breeding anomaly in birds // Wilson Journal of Ornithology. V. 136. № 3. P. 393–404.
  33. Dinsmore S. J., Dinsmore J. J., 2007. Modeling avian nest survival in program MARK // S. L. Jones, G. R. Geupel (eds). Beyond Mayfield: measurements of nest-survival data / Studies in Avian Biology. № 34. Camarillo, California: Cooper Ornithological Society. P. 73–83.
  34. Emlen S. T., Wrege P. H., 1991. Breeding biology of White-fronted Bee-eaters at Nakuru: The influence of helpers on breeder fitness // Journal of Animal Ecology. V. 60. № 1. P. 309–326.
  35. Etterson M. A., Nagy L. R., Robinson T. R., 2007. Partitioning risk among different causes of nest failure // Auk. V. 124. № 2. P. 432–443.
  36. Fisher R. J., Wellicome T. I., Bayne E. M., Poulin R. G., Todd L. D. et al., 2015. Extreme precipitation reduces reproductive output of an endangered raptor // Journal of Applied Ecology. V. 52. № 6. P. 1500–1508.
  37. Gimpel M. E., Carr J. M., 2017. First known case of a passerine presumably returning a dead chick to the nest // Maryland Birdlife. V. 66. № 2. P. 29–35.
  38. Glutz von Blotzheim U. N., 1962. Die Brutvögel der Schweiz. Eine Zussamenfassung unserer heutigen Kenntnisse über Verbreitung, Bestandesdichte, Ernährung und Fortpflanzung der seit 1900 in der Schweiz als Brutvögel nachgewiesenen Arten. Herausgegeben von der Schweizerischen Vogelwarte Sempach. Aarau: Verlag Aargauer Tagblatt. 648 s.
  39. Götmark F., 1992. The effects of investigator disturbance on nesting birds // D. M. Power (ed.). Current Ornithology. V. 9. New York: Plenum Press. P. 63–104.
  40. Guigueno M. F., Sealy S. G., 2012. Nest sanitation in passerine birds: implications for egg rejection in hosts of brood parasites // Journal of Ornithology. V. 153. № 1. P. 35–52.
  41. Guigueno M. F., Sealy S. G., 2017. Implications of nest sanitation in the evolution of egg rejection // M. Soler (ed.). Avian Brood Parasitism: Behaviour, Ecology, Evolution and Coevolution. Cham: Springer. P. 385–399.
  42. Guppy M., Guppy S., Marchant R., Priddel D., Carlile N. et al., 2017. Nest predation of woodland birds in south-east Australia: importance of unexpected predators // Emu. V. 117. № 1. P. 92–96.
  43. Handbook of the birds of Europe, the Middle East and North Africa. The birds of the Western Palearctic. V. 5. Tyrant Flycatchers to Thrushes, 1988 / S. Cramp (ed.). Oxford: Oxford Univ. press. 1063 p.
  44. Homann P. H., 1963. Reaction of Wood Warbler to young // Bird Banding. V. 34. № 1. P. 95.
  45. Hoover J. P., Robinson S. K., 2007. Retaliatory mafia behavior by a parasitic cowbird favors host acceptance of parasitic eggs // Proceedings of the National Academy of Sciences of the USA. V. 104. № 11. P. 4479–4483.
  46. Ibáñez-Álamo J.D., Sanllorente O., Soler M., 2012. The impact of researcher disturbance on nest predation rates: a meta-analysis // Ibis. V. 154. № 1. P. 5–14.
  47. Inch T., Nicoll M. A.C., Feare C. J., Horswill C., 2024. Population viability analysis predicts long-term impacts of commercial Sooty Tern egg harvesting to a large breeding colony on a small oceanic island // Ibis. Published Online: 2024-05-08. doi: 10.1111/ibi.13326
  48. Jacobson M. D., Tsakiris E. T., Long A. M., Jensen W. E., 2011. No evidence for observer effects on Lark Sparrow nest survival // Journal of Field Ornithology. V. 82. № 2. P. 184–192.
  49. Johnsgard P. A., Kear J., 1968. A review of parental carrying of young by waterfowl // O. S. Pettingill, D. A. Lancaster (eds). The Living Bird: Seventh Annual of the Cornell Laboratory of Ornithology. P. 89–102.
  50. Kirkpatrick C., Conway C. J., Ali M. H., 2009. Sanitation of entire broods of dead nestlings may bias cause-specific nest failure rates // Ibis. V. 151. № 1. P. 207–211.
  51. Klett A. T., Shaffer T. L., Johnson D. H., 1988. Duck nest success in the prairie pothole region // Journal of Wildlife Management. V. 52. № 3. P. 431–440.
  52. Larivière S., 1999. Reasons why predators cannot be inferred from nest remains // Condor. V. 101. № 3. P. 718–721.
  53. Li Q., Bi J., Wu J., Yang C., 2021. Impact of nest sanitation behavior on hosts’ egg rejection: an empirical study and meta-analyses // Current Zoology. V. 67. № 6. P. 683–690.
  54. Lobato E., Moreno J., Merino S., Sanz J. J., Arriero E. et al., 2006. Maternal clutch reduction in the Pied Flycatcher Ficedula hypoleuca: an undescribed clutch size adjustment mechanism // Journal of Avian Biology. V. 37. № 6. P. 637–641.
  55. Luro A. B., Hauber M. E., 2017. A test of the nest sanitation hypothesis for the evolution of foreign egg rejection in an avian brood parasite rejecter host species // The Science of Nature. V. 104. Article number 14. https://doi.org/10.1007/s00114-017-1446-8
  56. Major R. E., 1990. The effect of human observers on the intensity of nest predation // Ibis. V. 132. № 4. P. 608–612.
  57. Major R. E., 1991. Identification of nest predators by photography, dummy eggs, and adhesive tape // Auk. V. 108. № 1. P. 190–195.
  58. Manolis J. C., Andersen D. E., Cuthbert F. J., 2000. Uncertain nest fates in songbird studies and variation in Mayfield estimation // Auk. V. 117. № 3. P. 615–626.
  59. Marini M. A., Melo C., 1998. Predators of quail eggs and the evidence of the remains: implications for nest predation studies // Condor. V. 100. № 2. P. 395–399.
  60. Martin T. E., 1992. Breeding productivity considerations: what are the appropriate habitat features for management? // J. M. Hagan III, D. W. Johnston (eds). Ecology and Conservation of Neotropical Migrant Land Birds. Washington, DC: Smithsonian Institution Press. P. 455–473.
  61. Martin T. E., Geupel G. R., 1993. Nest-monitoring plots: methods for locating nests and monitoring success // Journal of Field Ornithology. V. 64. № 4. P. 507–519.
  62. Marzluff J. M., Withey J. C., Whittaker K. A., Oleyar M. D., Unfried T. M. et al., 2007. Consequences of habitat utilization by nest predators and breeding songbirds across multiple scales in an urbanizing landscape // Condor. V. 109. № 3. P. 516–534.
  63. Mayer-Gross H., Crick H. Q.P., Greenwood J. J.D., 1997. The effect of observers visiting the nests of passerines: an experimental study // Bird Study. V. 44. № 1. P. 53–65.
  64. Mayfield H., 1961. Nesting success calculated from exposure // Wilson Bulletin. V. 73. № 3. P. 255–261.
  65. Mayfield H. F., 1975. Suggestions for calculating nest success // Wilson Bulletin. V. 87. № 4. P. 456–466.
  66. Montevecchi W. A., 1974. Eggshell removal and nest sanitation in Ring Dove // Wilson Bulletin. V. 86. № 2. P. 136–143.
  67. Montevecchi W. A., 1976. Eggshell removal by Laughing Gulls // Bird-Banding. V. 47. № 2. P. 129–135.
  68. Montgomerie R. D., Weatherhead P. J., 1988. Risks and rewards of nest defence by parent birds // Quarterly Review of Biology. V. 63. № 2. P. 167–187.
  69. Moreno J., 2012. Parental infanticide in birds through early eviction from the nest: rare or under-reported? // Journal of Avian Biology. V. 43. № 1. P. 43–49.
  70. Newton I., 2004. Population limitation in migrants // Ibis. V. 146. № 2. P. 197–226.
  71. Nice M. M., 1957. Nesting success in altricial birds // Auk. V. 74. № 3. P. 305–321.
  72. Nichols J. D., Percival H. F., Coon R. A., Conroy M. J., Hensler G. L., Hines J. E., 1984. Observer visitation frequency and success of Mourning Dove nests: a field experiment // Auk. V. 101. № 2. P. 398–402.
  73. Nilsson S. G., 1984. The evolution of nest-site selection among hole-nesting birds: the importance of nest predation and competition // Ornis Scandinavica. V. 15. № 3. P. 167–175.
  74. Paclik M., Misik J., Weidinger K., 2009. Nest predation and nest defence in European and North American woodpeckers: a review // Annales Zoologici Fennici. V. 46. № 5. P. 361–379.
  75. Pavel V., Chutný B., Petrusková T., Petrusek A., 2008. Blow fly Trypocalliphora braueri parasitism on Meadow Pipit and Bluethroat nestlings in Central Europe // Journal of Ornithology. V. 149. P. 193–197.
  76. Pieron M. R., Rohwer F. C., 2010. Effects of large-scale predator reduction on nest success of upland nesting ducks // Journal of Wildlife Management. V. 74. № 1. P. 124–132.
  77. Ralph C. J., Geupel G. R., Pyle P., Martin T. E., DeSante D.F., 1993. Handbook of Field Methods for Monitoring Landbirds. USDA Forest Service General Technical Report PSW-GTR-144. 41 p.
  78. Ricklefs R. E., 1969. An analysis of nesting mortality in birds // Smithsonian Contributions to Zoology. № 9. P. 1–48.
  79. Robinson G. L., Conway C. J., Kirkpatrick C., LaRocheet D.D., 2010. Response to nestling throat ligatures by three songbirds // Wilson Journal of Ornithology. V. 122. № 4. P. 806–809.
  80. Rothstein S. I., 1975. An experimental and teleonomic investigation of avian brood parasitism // Condor. V. 77. № 3. P. 250–271.
  81. Shaffer T. L., 2004. A unified approach to analyzing nest success // Auk. V. 121. № 2. P. 526–540.
  82. Shitikov D., Samsonov S., Makarova T., 2019. Cold weather events provoke egg ejection behaviour in open-nesting passerines // Ibis. V. 161. № 2. P. 441–446.
  83. Skutch A. F., 1976. Parent Birds and Their Young. Austin: University of Texas Press. 503 p.
  84. Sordahl T. A., 1994. Eggshell removal behavior of American Avocets and Black-necked Stilts // Journal of Field Ornithology. V. 65. № 4. P. 461–465.
  85. Spear L. B., Anderson D. W., 1989. Nest-site selection by Yellow-footed Gulls // Condor. V. 91. № 1. P. 91–99.
  86. Stanley T. R., 2004. Estimating stage-specific daily survival probabilities of nests when nest age is unknown // Auk. V. 121. № 1. P. 134–147.
  87. Stewart R. M., 1972. Nestling mortality in swallows due to inclement weather // California Birds. V. 3. № 3. P. 69–70.
  88. Székely T., Webb J. N., Houston A. I., McNamara J.M., 1996. An evolutionary approach to offspring desertion in birds // V. Nolan Jr., E. D. Ketterson (eds). Current Ornithology, Volume 13. New York and London: Plenum Press. P. 271–330.
  89. Šulc M., Hughes A. E., Mari L., Troscianko J., Tomášek O. et al., 2022. Nest sanitation as an effective defence against brood parasitism // Animal Cognition. V. 25. № 4. P. 991–1002.
  90. Tella J. L., Hiraldo F., Donazar-Sancho J.A., Negro J. J., 1996. Costs and benefits of urban nesting in the Lesser Kestrel // D. M. Bird, D. E. Varland, J. J. Negro (eds). Raptors in Human Landscapes: Adaptions to Built and Cultivated Environments. London: Academic Press. P. 53–60.
  91. Tiainen J., Väisänen R. A., 1991. Nest record scheme // Monitoring bird populations: a manual of methods applied in Finland. Helsinki: Zoological Museum, Finnish Museum of Natural History, University of Helsinki. P. 75–86.
  92. Tinbergen N., Broekhuysen G. J., Feekes F., Houghton J. C.W., Kruuk H., Szulc E., 1962. Egg shell removal by the Black-headed Gull, Larus ridibundus L.; a behaviour component of camouflage // Behaviour. V. 19. № 1/2. P. 74–117.
  93. Thompson F. R. III, 2007. Factors affecting nest predation on forest songbirds in North America // Ibis. V. 149. Suppl. 2. P. 98–109.
  94. Vuorisalo T., Andersson H., Hugg T., Lahtinen R., Laaksonen H. et al., 2003. Urban development from an avian perspective: causes of hooded crow (Corvus corone cornix) urbanization in two Finnish cities // Landscape and Urban Planning. V. 62. № 2. P. 69–87.
  95. Weidinger К., 2008. Nest monitoring does not increase nest predation in open-nesting songbirds: inference from continuous nest-survival data // Auk. V. 125. № 4. P. 859–868.
  96. Wesołowski T., Tomiałojć L., 2005. Nest sites, nest depredation, and productivity of avian broods in a primeval temperate forest: do the generalisations hold? // Journal of Avian Biology. V. 36. № 5. P. 361–367.
  97. Westmoreland D., Best L. B., 1985. The effect of disturbance on Mourning Dove nesting success // Auk. V. 102. № 4. P. 774–780.
  98. Whittingham M. J., Bradbury R. B., Wilson J. D., Morris A. J., Perkins A. J. et al., 2001. Chaffinch Fringilla coelebs foraging patterns, nestling survival and territory distribution on lowland farmland // Bird Study. V. 48. № 3. P. 257–270.
  99. Wiggins D. A., Pärt T., Gustafsson L., 1994. Correlates of clutch desertion by female Collared Flycatchers Ficedula albicollis // Journal of Avian Biology. V. 25. № 2. P. 93–97.
  100. Wiklund C. G., 1982. Fieldfare (Turdus pilaris) breeding success in relation to colony size, nest position and association with Merlins (Falco columbarius) // Behavioral Ecology and Sociobiology. V. 11. № 3. P. 165–172.
  101. Wiklund C. G., Andersson M., 1994. Natural selection of colony size in a passerine bird // Journal of Animal Ecology. V. 63. № 4. P. 765–774.
  102. Yang C., Wang L., Liang W., Møller A. P., 2015. Nest sanitation behavior in hirundines as a pre-adaptation to egg rejection to counter brood parasitism // Animal Cognition. V. 18. № 1. P. 355–360.
  103. Zając T., 1995. Selection on laying date in the Blue Tit Parus caeruleus and the Great Tit Parus major caused by weather conditions // Acta Ornithologica. V. 30. № 2. P. 145–151.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Additional material_Video 1_MorozovNS
Download (25MB)
3. Additional material_Video 2_MorozovNS
Download (39MB)
4. Additional material_Video 3_MorozovNS
Download (40MB)
5. Additional material_Video 4_MorozovNS
Download (100MB)
6. Additional material_Video 5_MorozovNS
Download (39MB)
7. Additional material_Video 6_MorozovNS
Download (70MB)
8. Additional material_Video 7_MorozovNS
Download (38MB)
9. Additional material_Video 8_MorozovNS
Download (72MB)
10. Additional material_Video 9_MorozovNS
Download (96MB)
11. Fig. 1. Fieldfare nest with six chicks aged ~5 to 7.5 days without visible injuries, which died (no later than midday on May 10) during bad weather on May 8–10, 2017 (Moscow State University territory, Lebedeva Street, Vorobyovy Gory, Moscow, May 11, 2017; photo by the author).

Download (408KB)
12. Fig. 2. A fieldfare nest with old, well-preserved remains of chicks aged ~6–7 days, which presumably died during bad weather on May 8–10, 2017 (Moscow State University Sports Complex, Vorobyovy Gory, Moscow, June 7, 2017; photo by the author).

Download (429KB)
13. Fig. 3. Fragments of events (a–o, given in chronological order) in the nest of the fieldfare with five chicks that died at the age of ~7 to 9 days due to bad weather on May 7–9, 2017 (territory of the sports complex of Moscow State University, Vorobyovy Gory, Moscow; frames from video recordings made by a Bushnell NatureView HD Cam with Live View camera trap, Moscow time UTC+3): a – female on the nest with three dead and two alive chicks (May 8, 13:50); b – male on the nest with four dead and one alive chicks (this and subsequent pictures were taken on May 9, this one – at 9:49); c, d – the female grabbed one of the four dead chicks by the end of the wing (c) and carries it (d) out of the nest (10:37); d, e – the female carries out the next one, one of the three remaining dead chicks (10:45); f – the female pulls the living chick by the bases of the growing flight feathers on the left wing, swallows the torn out feathers (10:46); h – an opening and a little blood are visible on the left wing of the living chick at the site of the flight feathers torn out by the female (11:08); i, j – the female eats on the spot (i – 11:56), less often carries away from the nest (j – 12:08) the growing feathers in their cases, torn out by her from the wing of the fourth, not yet ejected dead chick; l, m – the female pulls the upper beak of the fourth dead chick and almost pulls it out of the nest (12:46); n – ~ half an hour before the disappearance of the fourth dead chick from the nest (in the photo it is covered by an adult bird), the female again begins to pull feathers from the wing of the living chick and eats them (13:45); o – the male brought an earthworm, which the weakened chick was unable to either swallow or hold in its beak (14:35).

Download (3MB)
14. Fig. 4. Fragments of events (a–p, given in chronological order) in the nest of a fieldfare with five chicks that died at the age of ~6–6.5 to 9–9.5 days due to rains in late May 2020 (Akademika Khokhlova Street near the Physics Department of Moscow State University, Vorobyovy Gory, Moscow; the pictures were taken with a Bushnell NatureView HD Cam with Live View camera trap): a, b, c – 3 minutes after throwing out the dead chick, the female tries to take the “youngest” of the four living chicks out of the nest, grabbing it by the wing with her beak, but does not complete this attempt (May 30, ~13:16); g, d - having pulled one of the three dead chicks out of the water at the bottom of the tray, the female placed its body on one of the other two bodies, and its neck and head on the upper edge of the nest (May 31, ~8:20); e–i - the female grabbed one of the two remaining dead chicks with her beak (e), placed it sideways on the upper edge of the nest and a thick branch running close to it, and flew away, leaving the body of the chick in this position for 8–10 sec (g), and upon returning, pulled it back into the tray (z, i) (May 31, ~13:20–13:22); k–m – the female pulled one of the two bodies out of the water at the bottom of the tray (k), left it lying on the upper edge of the nest with its head resting on the second body (l) for 3 seconds, and then threw it out of the nest (m) (May 31, ~16:32); n, o – the female throws out the last dead chick (May 31, ~16:33); p – the empty nest was visited by a long-eared owl (June 1, ~1:29). The camera trap timer readings had to be slightly adjusted, so the time of day is given approximately.

Download (4MB)
15. Fig. 5. In the morning, the male eats the remaining feathers of a female in the nest, which was captured by a long-eared owl at night (territory of the SAI MSU, Vorobyovy Gory, Moscow, June 5, 2016, 4:27; frame from a video recording made by a Seelock Spromise S128 camera trap).

Download (387KB)
16. Fig. 6. Actions of a pair of fieldfares during and after the destruction of their clutch by a red squirrel (near the Chemistry Department of Moscow State University, Vorobyovy Gory, Moscow, May 3, 2017; video footage taken with a Seelock Spromise S128 camera trap): a – a pair of birds attacking a squirrel (6:09); b – the nest immediately after the destruction of the clutch (6:10); c – while both parents were eating the eggshells, the male (top) took a large fragment of the shell in his beak to carry it out of the nest (6:12); d – the nest 30 minutes after the squirrel left, after the parents eliminated the traces of its attack (6:40); d, f – the female “forced out” the male, who had climbed into the tray, from the tray (d – he flies away) and sat down in the empty nest (f) (8:32).

Download (1MB)
17. Fig. 7. Fragments of events (a–d, given in chronological order) in the nest of a fieldfare with five small chicks and one egg, stolen in three stages by gray crows (park between the Physics and Chemistry Faculties of Moscow State University, Vorobyovy Gory, Moscow, May 8, 2018; video footage taken with a Bushnell NatureView HD Cam with Live View camera trap): a – 2 min after the crows have stolen four of the five chicks, the female fieldfare takes a bunch of nesting material out of the tray (5:41); b – the egg is the last to be stolen (5:46); c - after the crows have kidnapped her offspring, the female not only sits in the empty nest, but also periodically tamps the tray: quickly working her legs, she presses her chest on the bottom for 1.5-3 seconds, and with the folds of her half-spread wings, crop, throat and undertail simultaneously - on the walls of the tray (6:14); d - sitting in the empty nest, the female also straightens the dry blades of grass sticking out of its upper edge (6:14); d - the male tries to pass an earthworm, brought to the chicks more than an hour after their disappearance, to the female sitting in the empty nest (7:00).

Download (1MB)
18. Fig. 8. Fieldfare removing the remains of a clutch of four eggs destroyed by a jay right in their nest (student car park of Moscow State University, Vorobyovy Gory, Moscow, June 3, 2018; video footage taken with a Seelock Spromise S128 camera trap): a – the jay reached the fieldfare’s nest unnoticed (12:42); b – the fieldfare (most likely a female) carries out the shell of one of the eggs eaten by the jay from the nest (12:49).

Download (419KB)

Copyright (c) 2024 Russian Academy of Sciences